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Chapter 1. Introduction 

 

1. Overview 

Ab initio quantum chemistry seeks to describe and elucidate chemical species and 

processes using quantum mechanics. For dynamical chemical processes, molecular 

dynamics1 (MD), where the atoms of a chemical system move according to Newton’s 

laws of motion, is frequently used. MD calculations have historically used classical 

mechanics2-4 rather than quantum mechanics to describe the evolution of a chemical 

system. The use of classical mechanics with MD has proven to be a great success, but 

classical MD has deficiencies, since quantum mechanics must be used to describe 

important chemical phenomena such as bond breaking or excited states accurately. With 

the increase of computer power over the past half-century, ab initio MD (AIMD) 

methods5-7 that describe a chemical system using quantum mechanics have been 

developed to eliminate the deficiencies of classical MD. 

Unfortunately, the application of AIMD is limited to small systems and short time 

scales since standard quantum chemical methods exhibit non-linear scaling with system 

size.  More recently, new approaches8,9 have circumvented the non-linear scaling of 

quantum chemical methods by exploiting the fact that most chemical interactions are 

local and therefore distant interactions can be approximated or even ignored. Other 

methods obtain quantum mechanical accuracy at a cost associated with classical 

mechanics by deriving a classical force field directly from ab initio calculations.10-14 

Individually and in combination, methods that eliminate the non-linear scaling of 
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standard ab initio methods have the potential to extend the reach of AIMD to larger 

systems such as surfaces, molecular clusters, bulk liquids, and proteins. 

 

2. Dissertation Overview 

Chapter 1 of the thesis introduces the fundamental concepts of ab initio quantum 

chemistry and provides relevant background to the methods used in the subsequent 

chapters. Chapter 2 derives and discusses the implementation of the analytic gradient for 

the fragment molecular orbital (FMO) method interfaced with restricted Hartree-Fock 

theory. Chapter 3 derives and discusses the implementation of the analytic gradient for 

the FMO method interfaced with density functional theory. Chapter 4 demonstrates the 

need for the FMO analytic gradient for accurate FMO molecular dynamics (MD) 

simulations. Chapter 5 determines the surface affinity of the hydronium ion in water 

clusters using MD and umbrella sampling. Chapter 6 calculates the melting point of Ice-Ih 

water from MD simulations using the effective fragment potential. Chapter 7 concludes 

the thesis with a summary of the previous chapters.  

 

3. Theoretical Background 

The state at time t of a non-relativistic quantum system is determined by the time-

dependent Schrodinger equation,15 (atomic units are used throughout the introduction 

unless otherwise indicated). 

i ∂
∂t

Ψ(r, t) = ĤΨ(r, t).  (1) 

where Ψ(r, t)  is the wavefunction and r  is the coordinates of all electrons and nuclei. 

The Hamiltonian, Ĥ , is defined as 
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Ĥ = −∇i
2

2mii

N

∑ +V (r, t),
 (2)

 

where mi  is the mass of particle i, V (r, t)  is the potential, and the sum N is over all 

particles.  For potentials that do not vary with time, V (r, t) =V (r) , the wavefunction can 

be written as a product, Ψ(r, t) = Ψ(r)Ψ(t) , and a time-independent Schrodinger 

equation can be derived, 

ĤΨ(r) = EΨ(r),  (3) 

where E is the energy of the system. 

For a system consisting of only nuclei and electrons, the Hamiltonian in Eq. (3) is 

Ĥ = −∇i
2

2i

e

∑ + −∇A
2

2mAA

n

∑ − ZA

RA − rii

e

∑
A

n

∑ + 1
ri − rji> j

e

∑ + ZAZB

RA − RBA>B

n

∑ ,
 (4)

 

where the sum e is over all electrons, the sum n is over all nuclei, ZA is the nuclear charge 

of nucleus A, ri is the electron coordinate of electron i, and RA is the nuclear coordinate of 

nucleus A. 

Eq. (3) is impossible to solve for chemical systems as Eq. (3) treats all nuclei and 

electrons quantum mechanically, and the electron-nuclei many-body problem cannot be 

separated.  Since electrons are much lighter than the nuclei, the electrons move much 

faster than the nuclei. Therefore, the electrons are assumed to adjust immediately to any 

perturbation in the coordinates of the nuclei and the distribution of the electrons can be 

calculated assuming the nuclei are fixed points in space.  The assumption is known as the 

Born-Oppenheimer approximation16 and allows an electronic Schrodinger equation  

ĤelecΨ(r)elec = EelecΨ(r)elec  (5) 

to be solved to determine the electronic wavefunction.  The electronic Hamiltonian is 
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Ĥelec =
−∇i

2

2i

e

∑ − ZA

RA − rii

e

∑
A

n

∑ + 1
ri − rji> j

e

∑ ,
 (6)

 

which is similar to the full Hamiltonian in Eq. (4) except that the 2nd and 5th terms in Eq. 

(4) have been eliminated.   

For ab initio molecular dynamics calculations, the determination of the total 

energy of the system is necessary. Since the nuclei are taken to be point particles, the 

nuclei kinetic energy and nuclei-nuclei potential energy can be treated classically and the 

total energy can be written as 

Etotal = Eelec +
ZAZB

RA − RBA>B

n

∑ + mAvA
2

2A

n

∑
 (7)

 

where vA is the velocity of nuclei A. 

 For all but a few special cases, the electronic Schrodinger equation cannot be 

solved analytically due to the electron-electron interaction term.  Therefore, the Hartree-

Fock approximation17 is applied and the third term in Eq. (4), the electron-electron 

interaction term, is replaced by a potential, vHF (i) , that is the averaged position of the 

other electrons in the system. vHF (i)  is defined as 

vHF (1) = Ĵi (1)− K̂i (1)⎡⎣ ⎤⎦
i=1

e

∑ .  (8) 

In Eq. (8), Ĵ , is the Coulomb operator, K̂ is the exchange operator. 

The Hartree-Fock potential is then used to define a Fock operator, 

F̂ = −∇i
2

2i

e

∑ − ZA

RA − rii

e

∑
A

n

∑ + vHF (i)
i

e

∑ ,
 (9)

 

The Fock operator can be rewritten as a sum of one-electron operators  
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F̂ = F̂(i)
i

e

∑ = −∇i
2

2
+ ZA

RA − ri
+ vHF (i)

A

n

∑
⎡

⎣
⎢

⎤

⎦
⎥

i

e

∑ ,  (10) 

and the Hartree-Fock equations can be written as a sequence of coupled one-electron 

eigenvalue problems, 

F̂(i)ψ (i) = ε iψ (i),  (11) 

where ψ (i) , called a molecular orbital, is the eigenfunction of the one-electron Fock 

operator, F̂(i) , and ε i is the eigenvalue, called the orbital energy. Since each of the 

Hartree-Fock eigenvalue equations explicitly depend only on a single electron coordinate 

i, the total solution of the Hartree-Fock equations is a product of one-electron orbitals, 

ψ (i) , called a Hartree product 

ΨHP =ψ (1)ψ (2)ψ (3)...ψ (N ).  (12) 

The Hartree product wavefunction is symmetric to the interchange of any two electrons 

and therefore violates the Pauli principle that requires the wavefunction to be anti-

symmetric to the exchange of any two fermions.  The violation of the Pauli principle can 

be fixed through the use of a Slater determinant,18 

ΨHF = ψ (1)ψ (2)ψ (3)...ψ (N ) ,  (13) 

which antisymmetrizes the Hartree product wavefunction. The wavefunction, ΨHF , is 

then used as the Hartree-Fock wavefunction. 

 As of yet, no restriction has been place on the form of the ψ (i) .  To facilitate 

calculations, the one-electron orbitals are normally expanded in a linear combination of 

atomic orbitals (LCAO) as 

ψ (i) = Caiφa
a
∑

 (14)
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where Cαi is the molecular orbital coefficient and φa is an atomic orbital.  The atomic 

orbitals are also referred to as basis functions and for most ab initio calculations are 

Gaussian functions or contractions of multiple Gaussian functions. 

 With the introduction of the basis, the Roothan-Hall equations,19
  

FC = SCε   (15) 

can be derived. The Roothan-Hall equations change the integro-differential equations of 

Hartree-Fock into an algebraic form that can be solved using standard matrix techniques.  

In the Roothan-Hall equations, F is the Fock matrix 

Fµν = dr1∫ φµ (1)F̂(1)φν (1),  (16)
 

C is the matrix of the molecular orbital coefficients Cαi , 

S is the overlap matrix, 

Sµν = dr1∫ φµ (1)φν (1),  (17)
 

and ε is a diagonal matrix of the orbital energies ε i . 

 From the solution of the Roothan-Hall equations, the Hartree-Fock energy, EHF , 

can be obtained.  The Hartree-Fock method is variational, so EHF is guaranteed to be an 

upper bound to the exact energy. The difference in energy between the exact energy and 

the Hartree-Fock energy is called the correlation energy, Ecorr , and is defined as 

Eexact = EHF + Ecorr.  (18) 

Since the Hartree-Fock energy is an upper bound on the exact energy, the correlation 

energy is negative. The correlation energy arises from the replacement of the electron-

electron interaction term in Eq. (6) with the Hartree-Fock potential in Eq. (9). While the 
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correlation energy is small relative to the total energy, the correlation energy is still 

necessary to include to obtain accurate energies of chemical systems.  

 A common of way of including the correlation energy is through Møller-Plesset 

perturbation theory,20 which uses Raleigh-Schrodinger perturbation theory with the 

Hartree-Fock wavefunction as a zeroth order wavefunction. The full Hamiltonian, 
⌢
H , 

can be written as a sum of the Hartree-Fock Hamiltonian, 
⌢
H0 , and a small perturbation, 

⌢
V , 

⌢
H =

⌢
H0 + λ

⌢
V.  (19) 

The energy and the wavefunction can then be expanded in a series as 

ΨMPn = Ψ0 + λ iΨi
i=1

n

∑  

EMPn = E0 + λiEi
i=1

n

∑
 (20)

 

After some algebra the Hartree-Fock wavefunction can be proven to be correct through 

first order and the second order energy term, 

E2 =
ΨD V ΨHF

2

ED
(0) − EHF

(0)
D
∑ ,

 (21)
 

is the next energy term that contributes.   In Eq. (21), the summation runs over all double 

excitations, D. ΨD are doubly excited determinants using the Hartree-Fock wavefunction 

as the ground state, and ED
(0)  and EHF

(0)  are the zeroth order energies of a doubly excited 

determinant and the Hartree-Fock wavefunction respectively. The second order energy 

term can be added to the Hartree-Fock energy  

EMP2 = EHF + E2  (22) 
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to obtain the second order Møller-Plesset (MP2) energy. 

The second order energy term that is included in MP2 accounts for 80-90% of the 

total correlation energy.  Higher order energy terms (MP3, MP4, etc…) can be added, but 

due to convergence issues with the higher order energy terms they are not routinely 

included.  

As an alternative to the ab initio methods that use a wavefunction to calculate 

energies and properties, density functional theory21 (DFT) uses the electronic density.  

DFT is in principal exact, and since the electronic density is a much simpler function than 

the electronic wavefunction, DFT is able to include electron correlation at less of a 

computational cost than wavefunction methods.  

To practically perform DFT calculations, a set of equations similar to the Hartree-

Fock equations, the Kohn-Sham equations, are solved.  Instead of the Fock operator in 

Hartree-Fock theory, DFT uses the one-electron Kohn-Sham operator 
⌢
hKS , 

⌢
hKS =

−∇2

2
+ ZA

RA − r
+ d ′r ρ( ′r )

r − ′r∫ +V XC (r)
A

n

∑
 (23)

 

The Kohn-Sham operator is similar to the Fock operator in that the electrons can be 

treated as independent particles.  The difference between DFT and HF lies in the 

replacement of the HF exchange term with the exchange correlation term, V XC (r) . The 

replacement of the HF exchange term with V XC (r)  allows DFT to include electron 

correlation in the calculation and if the exact V XC (r)  was known, DFT would be exact. 

Unfortunately, the exact V XC (r)  has never been found for any chemical system, and 

approximation of V XC (r)  is necessary. Though DFT is not systematically improvable, 
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unlike perturbative methods, such as Moller-Plesset perturbation theory or other ab initio 

methods like coupled cluster theory are in principal, the cheap cost of solving the Kohn-

Sham equations combined with the inclusion of some electron correlation has resulted in 

DFT being widely used in electronic structure calculations. 

 Standard implementations of quantum mechanical methods scale poorly with 

respect to system size. Hartree-Fock scales ~N4, MP2 scales ~N5, and the coupled cluster 

singles and doubles with perturbative triples method scales ~N7, where N is the number 

of basis functions. In order to circumvent the non-linear scaling, fragmentation can be 

employed. In fragmentation methods, instead of one large quantum mechanical 

calculation on the system of interest, the system is divided into smaller pieces, termed 

fragments, and then a quantum mechanical calculation is performed on each of the 

fragments.  Many fragmentation methods exist,9 but the present thesis will focus on the 

fragment molecular orbital (FMO) method.23 The FMO methods begins by dividing a 

chemical system into non-overlapping fragments termed monomers. A quantum 

mechanical calculation is then performed on each of the monomers in the electrostatic 

potential of all the other monomers. The field is then updated with the new density of 

each monomer and the process is iterated to self-consistency.  Next, a quantum 

mechanical calculation may be performed on pairs of monomers or dimers, as in the 

FMO2 method.  The dimer calculation also takes place in the electrostatic potential of all 

other monomers, but is not iterated, because the dimer calculation is considered to be a 

small perturbation to the monomer energies.  If 3-(4-,5-,…)body properties are important 

for the system, calculations can also be performed on trios (quartets, quintets, …) of 
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monomers in the electrostatic potential of all other monomers. Similar to the dimer 

calculation, the additional n-body calculations are not iterated to self-consistency. 

The FMO energy is then calculated as a sum of an n-body expansion of the 

energy of the n-mers.  The expansion can be written as sum of n-order energies 

EFMO(N ) = E
1 + E 2 + E3 + ... + EN

E1 = EI
I

N

∑

E 2 = EIJ − EI − EJ( )
I>J

N

∑

E3 = (EIJK
I>J>K

N

∑ − EI − EJ−EK − ΔEIJ − ΔEJK − ΔEIK )

. (24) 

where 

ΔEIJ = EIJ − EI − EJ ,  (25) 

The sum N is over all fragments and EX ,EXY , and EXYZ  are the energies of monomer X, 

dimer XY, and trimer XYZ respectively. 

The termination of the n-body expansion at second order is called FMO2 and is 

the most commonly used FMO expansion. Termination of the expansion at third order is 

called FMO3 and will also be used in the following chapters. 

 Modeling solvation effects, especially the solvation by water, is important for a 

wide variety of systems. Modeling solvation through the addition of quantum mechanical 

solvent molecules rapidly becomes infeasible due to the previously described poor 

scaling with system size of quantum mechanical methods. While fragmentation methods 

such as FMO can help reduce the scaling, the inclusion of solvent effects using FMO still 

proves computationally difficult. Partly due to the difficulty of describing solvent effects 

using ab initio methods, quantum mechanical/molecular mechanical (QM/MM) 
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methods24-26 have been developed that allow a solute molecule to be described using 

quantum mechanics while the surrounding solvent molecules are treated with classical 

mechanics. One such method is the effective fragment potential (EFP).10-13 EFP is a one-

electron model potential with parameters derived from an ab initio calculation.  EFP has 

two models, EFP1, which is restricted to water, and EFP2, which can be used to model 

any solvent. As EFP particles are internally frozen, they can only model intermolecular 

interactions. EFP differs from most classical solvation potentials in that EFP contains no 

empirically fitted parameters. 

 To simulate the dynamics of a chemical system, molecular dynamics1 (MD), in 

which atoms move according to Newton’s second law of motion,  

F = ma,  (26) 

is commonly used. To find the acceleration on an atom and subsequently the velocity and 

position of the atom, the calculation of the force is necessary.  In a quantum mechanical 

calculation, the force on an atom can be obtained by calculating the gradient of the 

potential, which is found from the derivative of the total energy with respect to nuclear 

coordinate.  Therefore, the calculation of accurate gradients is of great importance for ab 

initio MD simulations.  
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Chapter 2. Fully analytic energy gradient in the fragment molecular orbital method 

A paper published in The Journal of Chemical Physics 

Takeshi Nagata, Kurt Brorsen, Dmitri G. Fedorov, Kazuo Kitaura, Mark S. Gordon 

 

Abstract 

The Z-vector equations are derived and implemented for solving the response 

term due to the external electrostatic potentials, and the corresponding contribution is 

added to the energy gradients in the framework of the fragment molecular orbital (FMO) 

method. To practically solve the equations for large molecules like proteins, the equations 

are decoupled by taking advantage of the local nature of fragments in the FMO method 

and establishing the self-consistent Z-vector method. The resulting gradients are 

compared with numerical gradients for the test molecular systems: (H2O)64, alanine 

decamer, hydrated chignolin with the protein data bank (PDB) ID of 1UAO and a Trp-

cage miniprotein construct (PDB ID: 1L2Y). The computation time for calculating the 

response contribution is comparable to or less than that of the FMO self-consistent charge 

calculation. It is also shown that the energy gradients for the electrostatic dimer 

approximation are fully analytic, which significantly reduces the computational costs. 

The fully analytic FMO gradient is parallelized with an efficiency of about 98 % on 32 

nodes. 

 

1.  Introduction 

Dynamics simulations of large molecules have become very important in the field 

of computational chemistry.1-7 For example, thermodynamic data such as the free energy 
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and entropy can be extracted from such simulations. Since chemical processes occur at 

non-zero temperatures, an increasing number of molecular dynamics (MD) simulations 

have been performed using model potentials based on molecular mechanics (MM). 

Another common use of computational simulations is the sampling of potential energy 

surfaces for local and global minima using for example, Monte Carlo (MC) simulations. 

For instance, the structural data of proteins measured by X-ray or nuclear magnetic 

resonance (NMR) can be refined with the help of a computational simulation and the 

resulting structure stored in the protein data bank (PDB). Classical MM schemes can, in 

principle, be replaced by more accurate methods that consider the electronic structure 

explicitly.8-13 The benefit of this replacement is that by using first principles methods, 

more reliable and sophisticated thermodynamic properties, dynamics, and structures can 

be provided. 

The cost of conventional quantum mechanical (QM) electronic structure 

approaches formally scales at least as N m , where N measures the size of the molecular 

system and m ranges from 3 for simple methods (e.g., the local density approximation of 

density functional theory) to much higher values for correlated methods. Considerable 

efforts are invested in developing linear scaling or )(NO  methods.14, 15 The 

fragmentation methods have a fairly long history16-22 and now it is an active area of 

research.13,23-32 

One such method is the fragment molecular orbital (FMO) method.33-36 The FMO 

method enables the calculation of electronic states for large molecules by performing MO 

calculations in parallel on fragments of a large molecular system using external 

electrostatic potentials (ESP). These ESPs describe the electrostatic field due to charge 
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distributions of all of the other fragments. MOs of individual fragments are local in 

nature, because they are expanded in terms of basis functions on the atoms in the 

fragments, reducing the computation time significantly. Additionally, in order to realize 

linear-scaling, approximations have been proposed for the time-consuming ESP 

calculation in FMO34, 37 and other methods.10 The fragment self-consistent procedure 

employed in FMO has been used in somewhat different forms in other methods,18, 

19,38,,9,39 while the many-body expansion of the energy is conceptually related to the 

theory of intermolecular interactions16 or the density expansion method.20 

Over the past decade, the FMO method has become one of the most extensively 

developed fragmentation methods for the calculation of accurate chemical properties, 

such as the total energy, the dipole moment and the interaction energy between fragments 

in large systems. The FMO method has been interfaced with many QM methods: Second 

order Møller-Plesset (MP2) perturbation theory,40, 41 coupled-cluster (CC) theory,42 

density functional theory (DFT),43, 44 the multiconfiguration self-consistent field 

(MCSCF) method,45 configuration interaction (CI),46, 47 time-dependent DFT (TDDFT),48, 

49, 50 open-shells51 and nuclear-electronic orbitals.52 For these methods, the total energies 

are in good agreement with the corresponding conventional QM total energies. The FMO 

method has been applied to a number of large systems.53-66 FMO-MD has been used67-78 

to study the dynamics of various processes such as chemical reactions. However, the 

FMO-MD method suffers from an accumulation of errors67 with the time evolution due to 

an incomplete analytic FMO energy gradient. 

The analytic FMO energy gradient reported by Kitaura et al. in 2001,79 was 

incomplete since the response term due to the ESPs was neglected assuming that it is a 
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small contribution for small basis sets. It was subsequently illustrated that when using 

larger basis sets, such as 6-31G(d),80 the response contribution to the gradient is 

substantial. Evaluating the response contribution requires the solution of the coupled-

perturbed Hartree-Fock (CPHF) equations. These equations are time-consuming to solve 

for large molecules, since they depend not on the fragment size, but on the size of the 

entire system. 

Since the original report of a partially analytic FMO gradient,79 several 

improvements regarding previously missing terms in the FMO gradient have been 

implemented in the GAMESS program package:81, 82 (a) The ESP derivative terms 

including the Mulliken point charge (PTC) approximation (ESP-PTC);80 (b) the 

derivative of the dimer energy of two distant fragments approximated as the electrostatic 

interaction energy (the electrostatic dimer approximation, ES-DIM)83 and (c) the hybrid 

orbital projection derivatives.84 

The last and most complicated missing response term is the subject of the present 

paper in which the exact response term for the FMO ESP gradient contribution is 

introduced, and the fully analytic FMO energy gradient is implemented, with an 

additional computation time requirement that is comparable to the first step of an FMO 

calculation (the self-consistent charge, SCC, iterations. The gradient implementation is 

also extended to the ES-DIM approximation, but not yet to the ESP-PTC approximation. 

Consequently, the usefulness of the FMO method is improved by establishing a complete 

expression of the analytic energy gradient. 

Similarly to FMO, the response term arises in other methods where the external 

charges are not fully self-consistent. For example, in the electronically embedded 
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method85, 86 the layers are introduced in the system, this is different from fragments 

because layers are mutually inclusive, i.e., lower layers include higher layers, and thus 

the lowest layer calculation deals with the whole system, whereas the fragment based 

approach we take uses the locality of fragments. On the other hand in some other 

fragment methods such as X-Pol87 the CPHF-related terms do not arise. 

 

2.  Fully analytic FMO energy gradient 

2.1  Overview of the FMO energy gradient 

In the following equations, the FMO energy expression33-36 and the corresponding 

gradient equations are briefly summarized. The 2-body FMO (FMO2) total energy is 

represented as 

E =
I

N

∑EI
' +

I>J

N

∑(EIJ
' − EI

' − EJ
' )+

I>J

N

∑Tr(ΔDIJVIJ ),
 

 (1) 

 where '
XE  is the internal fragment energy for fragment X (X=I or IJ, for monomers and 

dimers, respectively). IJV  is the matrix form of the electrostatic potential (ESP) for 

dimer IJ due to the electron densities and nuclei of the remaining fragments, i.e., 

Vµν
IJ =

K≠IJ
∑ uµν

K + vµν
K( ).   (2) 

 The one-electron and two-electron integrals in IJVµν  are, respectively, 

,= νµµν
A

A

KA

K Zu
Rr −

−∑
∈

 (3) 

vµν
K =

λσ∈K
∑Dλσ

K µν |λσ( ),  (4) 
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 where KDλσ  is the density matrix element of fragment K and ( )λσµν |  is a two-electron 

integral in the AO basis. The dimer density matrix difference IJDΔ  in Eq. (1) is defined 

by 

ΔDIJ = DIJ − (DI ⊕DJ ).   (5) 

 We note that the SCC process ensures the self-consistency of monomer densities with 

respect to each other but not monomer and dimer densities. The direct sum in Eq. (5) 

means blockwise addition of two monomer matrices into the dimer supermatrix. 

The internal fragment energies in Eq. (1) may be written in the form: 

EX
' =

µν∈X
∑Dµν

X hµν
X + 1

2 µνλσ∈X
∑ Dµν

X Dλσ
X − 1

2
Dµλ

X Dνσ
X⎡

⎣⎢
⎤
⎦⎥
µν |λσ( )+

µν∈X
∑Dµν

X Pµν
X + EX

NR,  (6) 

 where Xhµν  is the X-mer one-electron Hamiltonian and the nuclear repulsion energy is 

.=
>)(

NR

AB

BA

BXAXB
X R

ZZE ∑∑
∈∈

  (7) 

 Note that monomer and dimer densities are determined by the MO calculations in the 

presence of ESPs due to the remaining monomers. For fragmentation across a covalent 

bond, the hybrid orbital projection (HOP) contribution  

i∈X

occ

∑2 i P̂X i =
µν∈X
∑Dµν

X Pµν
X ,   (8) 

 must be considered in Eq. (6). The HOP operator is defined by 

P̂X =
k∈X
∑Bk θk θk ,   (9) 

 where kθ  is a hybrid orbital and the universal constant kB  is usually set to 10 6 . 

The differentiation of '
XE  with respect to nuclear coordinate a  leads to 
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∂EX
'

∂a
=

µν∈X
∑Dµν

X ∂hµν
X

∂a
+ 1
2 µνλσ∈X
∑ Dµν

X Dλσ
X − 1

2
Dµλ

X Dνσ
X⎡

⎣⎢
⎤
⎦⎥
∂ µν |λσ( )

∂a
+

µν∈X
∑Dµν

X ∂Pµν
X

∂a
 (10) 

−2
i, j∈X

occ

∑Sji
a,XFji

'X − 4
i∈X

occ

∑
r∈X

vir

∑Uri
a,XVri

X + ∂EX
NR

∂a
,  

 where the overlap derivative matrix element is defined by 

.=, X
j

X
X
i

X

Xa
ij C

a
S

CS ν
µν

µ
µν ∂

∂∗

∈
∑   (11) 

 The internal fragment Fock matrix element X'
ijF  is given in terms of MOs: 

Fij
'X = hij

X +
k∈X

occ

∑ 2(ij | kk)− (ik | jk)[ ]+ PijX,   (12) 

 where the MO-based projection operator matrix X
ijP  is introduced for convenience:  

Pij
X =

µν∈X
∑Cµi

X∗Pµν
XCν j

X .   (13) 

 Throughout this study, the Roman (ijkl! ) and Greek ( !µνρσ ) indices denote the 

molecular orbitals and atomic orbitals (AO) respectively. For the response term in Eq. 

(10), the following equation defined in the previous study80 is introduced: 

.4= ,
virocc,, Y

ri
Xa

ri
XrXi

YXa
VUU ∑∑

∈∈
  (14) 

 The response terms Xa
riU
,  associated with ESP Y

riV  in the MO basis arise from the 

expansion of the MO coefficient derivative in terms of the MO coefficients,88 and Eq. 

(14) sums the Xa
riU
,  terms multiplied by the Y

riV  terms in order to simplify the gradient 

derivations. There are two types of 
YXa

U
,,

 terms: (a) 
IIa

U
,,

 (i.e., X=Y) arising from the 



www.manaraa.com

 21  

derivative of the monomer terms, and (b) 
IJXa

U
,,

 where X can be I, J or IJ (related to the 

three D terms in Eq. (5)). The derivatives of the MO coefficients can be written as  

.= ,
virocc

X
m

Xa
mi

Xm

X
i CU
a
C

µ
µ ∑

+

∈∂
∂

  (15) 

 To obtain the occupied-virtual orbital response Xa
riU
, , one must solve the CPHF 

equations. This will be discussed in subsequent subsections. 

The differentiation of the ESP energy contribution in Eq. (1) with respect to 

nuclear coordinate a leads to 

∂
∂a
Tr(ΔDIJVIJ ) =

µν∈IJ
∑ΔDµν

IJ

K≠IJ
∑ ∂uµν

K

∂a
+

λσ∈K
∑Dλσ

K ∂ µν |λσ( )
∂a

⎡

⎣
⎢

⎤

⎦
⎥  (16) 

−2
µν∈IJ
∑Wµν

IJ ∂Sµν
IJ

∂a
+ 2

µν∈I
∑Wµν

I ∂Sµν
I

∂a
+ 2

µν∈J
∑Wµν

J ∂Sµν
J

∂a
+U

a,IJ ,IJ
−U

a,I ,IJ
−U

a,J ,IJ
 

−2
K≠IJ
∑

µν∈K
∑ΔXµν

K (IJ )Sµν
a,K + 4

K≠IJ
∑

µν∈IJ
∑

r∈K

vir

∑
i∈K

occ

∑ΔDµν
IJUri

a,K µν | ri( ),  

 where 

Wµν
X = 1

4 λσ∈X
∑Dµλ

X Vλσ
IJ Dσν

X ,   (17) 

 and 

ΔXµν
K (IJ ) = 1

4 λσ∈K
∑Dµλ

K

ζη∈IJ
∑ΔDζη

IJ ζη |λσ( )⎡

⎣
⎢

⎤

⎦
⎥Dσν

K .
 

 (18) 

The collection of all the 
YXa

U
,,

 terms in Eq. (10) and Eq. (16) subject to the 

differentiation of Eq. (1) forms the following equation: 

U
a
= −

I

N

∑U
a,I ,I

−
I>J

N

∑ U
a,IJ ,IJ

−U
a,I ,I

−U
a,J ,J( )+

I>J

N

∑ U
a,IJ ,IJ

−U
a,I ,IJ

−U
a,J ,IJ( ).  (19) 
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a

U  is zero when no ESP approximations are applied or when all the ESPs are 

approximated uniformly (e.g., with the ESP-PTC approximation).[80] Otherwise, 
a

U  is 

only approximately equal to zero. 
a

U  is regarded as a compensation term arising by 

defining the internal fragment energies and the ESP contribution separately in Eq. (1). If 

0=
a

U , then in Eq. (16) the dimer-related terms U
a,IJ ,IJ

−U
a,I ,IJ

−U
a,J ,IJ

 need not be 

evaluated, and the only terms that require the solution of CPHF equations come from the 

monomers, Ia
riU
, . 

2.2  Coupled-perturbed Hartree-Fock equations in FMO 

Calculating the fully analytic FMO energy gradients (with the aforementioned 

conditions on the ESP approximations that lead to 0=
a

U ) requires only the response 

terms due to the monomers, i.e., Ia
riU
, . These terms can be obtained using the diagonal 

nature of the monomer Fock matrices. The purpose of this subsection is to derive the 

CPHF equations for Ia
riU
,  in the framework of the FMO method. 

For monomer I, the corresponding Fock matrix rewritten in terms of MOs is 

I
ij

I'
ij

I
ij VFF +=   (20) 

= !hij
I +

k∈I

occ

∑ 2(ij | kk)− (ik | jk)[ ]+ PijI ,  

 where the one-electron Hamiltonian in FMO is 

.=~ I
ij

I
ij

I
ij Vhh +   (21) 

 I'
ijF  is the internal Fock matrix (i.e., the full matrix I

ijF  with ESP subtracted) and I
ijP  is 

the projection operator matrix. 

The differentiation of Eq. (20) with respect to nuclear coordinate a  is 
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∂Fij
I

∂a
= ∂
∂a
!hij
I +

k∈I

occ

∑ 2(ij | kk)− (ik | jk)[ ]+ PijI
⎛
⎝⎜

⎞
⎠⎟
.   (22) 

 After some algebra, Eq. (22) leads to 

∂Fij
I

∂a
= Fij

a,I +
k∈I

occ+vir

∑ Uki
a,IFkj

I +Ukj
a,IFik

I( )+
k∈I

occ+vir

∑
l∈I

occ

∑Ukl
a,I Aij,kl

'  (23) 

+
K≠I
∑

k∈K

occ+vir

∑
l∈K

occ

∑Ukl
a,K 4(ij | kl),  

 In Eq. (23) a superscript a indicates a derivative with respect to coordinate a. The 

(molecular) orbital Hessian contribution is given by 

Aij,kl
' = 4(ij | kl)− (ik | jl)− (il | jk),   (24) 

 and the Fock derivative is  

Fij
a,I = hij

a,I +Vij
a,I +

k∈I

occ

∑ 2(ij | kk)a − (ik | jk)a⎡⎣ ⎤⎦ + Pij
a,I ,  (25) 

 Eq. (25) is derived from Eq. (10.7) of Ref. [88]. The derivative of the one-electron 

Hamiltonian, Ia
ijh
,  and the derivative two-electron integral, aklij )|(  are defined as 

,=,

a
h

CCh
I

I
j

I
i

I

Ia
ij ∂

∂∗

∈
∑ µν

νµ
µν

 (26) 

(ij | kl)a =
µνρσ∈I
∑ Cµi

I∗Cν j
I Cρk

I∗Cσ l
I ∂(µν | ρσ )

∂a
,  (27) 

 (see Section 4.5 of Ref. 88 for details). The ESP derivative Ia
ijV
,  is defined as follows: 

Vij
a,I =

K≠I
∑ uij

a,K +
k∈K

occ

∑2 ij | kk( )a⎛
⎝⎜

⎞
⎠⎟
.   (28) 
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 I
ijF  is zero by virtue of SCF equations, if i≠ j. The HOP derivative Ia

ijP
,  and the one-

electron contribution in the ESP derivative Ka
iju
,  are defined analogously to Ia

ijh
, , as MO-

transformed derivative integrals (see Eq. (26)). 

After further algebra, Eq. (23) leads to: 

∂Fij
I

∂a
= Fij

a,I − ε j
I − ε i

I( )Uij
a,I − Sij

a,Iε j
I −

k,l∈I

occ

∑Skl
a,I 2(ij | kl)− (ik | jl)[ ]+

k∈I

vir

∑
l∈I

occ

∑Ukl
a,I Aij,kl

'  (29) 

−
K≠I
∑

k,l∈K

occ

∑ 2Skl
a,K (ij | kl)+

K≠I
∑

k∈K

vir

∑
l∈K

occ

∑Ukl
a,K 4(ij | kl),  

 where I
iε  is the orbital energy of MO i on fragment I and the following relation88 is used  

Sij
a,X +Uji

a,X +Uij
a,X = 0.   (30) 

 Eq. (29) contains two types of unknown values Xa
klU
,  to be solved: Ia

klU
,  for the target 

fragment and Ka
klU
,  from the remaining fragments. Therefore it is necessary to collect 

aF X
ij ∂∂ /  of all the monomer fragments to construct and solve the complete CPHF 

equations. Consequently, a set of CPHF equations have the dimension of the whole 

system given in the matrix form as 

,= 0
aa BAU   (31) 

 where the fragment diagonal and off-diagonal blocks of matrix A  are given in Eqs. (32) 

and (33), respectively,  

Aij,kl
I ,I = δ ikδ jl ε j

I − ε i
I( )− 4(ij | kl)− (ik | jl)− (il | jk)[ ],  (32) 

 and 

Aij,kl
I ,K = −4(ij | kl),   (33) 
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 where Eq. (32) comes from the MOs of only the target fragment I and Eq. (33) comes 

from the ESP acting upon I . The ij∈I element of vector a
0B  is 

B0,ij
a,I = Fij

a,I − Sij
a,Iε j

I −
kl∈I

occ

∑Skl
a,I 2(ij | kl)− (ik | jl)[ ]−

K≠I
∑

kl∈K

occ

∑2Skl
a,K (ij | kl).  (34) 

2.3  Z-vector method in FMO 

It is impractical to solve the CPHF equations of Eq. (31) for all nuclear 

coordinates of a large system. To avoid this difficulty, the Z-vector method is applied to 

the FMO CPHF equations.88 

In Eq. (16), the terms involving the unknowns  are collected for all of the 

dimer fragments IJ. The resulting contribution to the FMO energy gradient leads to  

ℜa = 4
I>J

N

∑
K≠IJ
∑

µν∈IJ
∑

r∈K

vir

∑
i∈K

occ

∑ΔDµν
IJUri

a,K µν | ri( )  (35) 

 

 where  is defined as 

Xri
K = 4

(I>J )≠K

N

∑
µν∈IJ
∑ΔDµν

IJ µν | ri( ).   (36) 

It is convenient to express Eq. (35) in vector form: 

ℜa =
K
∑

r∈K

vir

∑
i∈K

occ

∑Uri
a,KXri

K = XTUa  (37) 

 

 

 This reduces the CPHF problem for solving Eq. (31) to a set of simultaneous equations: 

  (38) 
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 It is still time-consuming to solve Eq. (38) directly, because it has the dimension of the 

entire system. However, taking advantage of the decoupled nature of the FMO method, a 

more clever approach can be considered by separating the diagonal ( II , ) and off-

diagonal ( IK , ) blocks of A  in Eq. (38): 

k∈I

vir

∑
l∈I

occ

∑Akl,ri
I ,I Zkl

I = Xri
I −

K≠I

all

∑
k∈K

vir

∑
l∈K

occ

∑Akl,ri
K ,I Zkl

K ,   (39) 

 or in matrix form:  

A I ,I( )T ZI = X'I ,   (40) 

 where 

X'I = X I −
K≠I
∑ AK ,I( )T ZK .   (41) 

Eq. (37), using definitions in Eqs. (34,38,40,41), gives the final formulation of the 

terms that are required to complete the FMO analytic gradient. The solution of these 

equations is accomplished as follows, illustrated in Fig. 1. By taking the I  diagonal 

blocks of matrix A and solving A I ,I( )T ZI = X I , one finds the initial .  is computed 

to solve Eq. (40). The external unknowns  in the last term of Eq. (39) are frozen and 

this equation is decoupled for each fragment I. Z is obtained by solving Eq. (40) for all 

fragments independently, and then  is updated with these new values of  for the 

next step; the calculations are then repeated until all elements in the Z-vector are self-

consistent. This is similar in both procedure and computational cost to the self-consistent 

charge (SCC) procedure in the monomer energy calculation (and it also bears a similarity 

to SCF), so it will be called the self-consistent Z-vector (SCZV) method. The 

preconditioned conjugate-gradient (CG) method is applied to solve Eq. (40). The 
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convergence test is made for all Z-vector elements. If the root mean square deviation 

(RMSD) of Z −new,I Z old,I  is larger than a threshold, the procedure returns to step 2 in Fig. 

1. 

The SCZV method is parallelized using the generalized distributed data interface 

(GDDI).89 Because of its iterative decoupled nature, the computation time of SCZV is 

comparable to that of SCC. 

2.4  Application to the electrostatic dimer approximation 

The previous subsection presented a derivation in which the analytic FMO 

gradient was derived with no approximations. In this subsection, the electrostatic dimer 

(ES-DIM) approximation for the fully analytic energy gradients is introduced, and it is 

shown that the response term arising from the ES-DIM approximation need not to be 

considered, because they cancel out with the response term from Eq. (19). 

For separated fragments I and J, if the distance IJR  (defined as the distance 

between the closest atoms in I and J divided by the sum of their van-der-Waals atomic 

radii) is larger than the threshold value DIMES−L  in the ES-DIM approximation, the 

internal pair interaction energy, i.e., the corresponding summand in the second sum on 

the right hand side of Eq. (1) can be replaced by 

EIJ
' − EI

' − EJ
' ≈ Tr(DIuJ )+ Tr(DJu I )+

µν∈I
∑

λσ∈J
∑Dµν

I Dλσ
J µν |λσ( )+ ΔEIJ

NR,  (42) 

 where the nuclear repulsion (NR) term ΔEIJ
NR = EIJ

NR − EI
NR − EJ

NR . In addition, the 

corresponding IJ term in the third sum of Eq. (1) cancels out because 0=IJDΔ . The 

differentiation of Eq. (42) with respect to nuclear coordinate a without considering the 

response term is given elsewhere.[83] Therefore, it is sufficient here to discuss how the 
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unknown orbital response terms in the FMO gradient are formulated. The collection of 

the response terms in the FMO gradient yields 

U
a
+ℜa = −

I

N

∑U
a,I ,I

−
I>J

N

∑ U
a,IJ ,IJ

−U
a,I ,I

−U
a,J ,J( )+

I>J

N

∑ U
a,IJ ,IJ

−U
a,I ,IJ

−U
a,J ,IJ( )  (43) 

+4
I>J

N

∑
K≠IJ
∑

µν∈IJ
∑

r∈K

vir

∑
i∈K

occ

∑ΔDµν
IJUri

a,K µν | ri( ).  

 As mentioned before,  only if there are no approximations to the ESPs. In the 

case of the ES-DIM approximation, Eq. (43) should be reformulated. 

When the ES-DIM approximation is applied to avoid SCF calculations for dimers 

separated by more than DIMES−L ,  in Eq. (19) can be rewritten as 

U
a
= −

I

N

∑U
a,I ,I

−
I>J (RIJ ≤LES−DIM )

N

∑ U
a,IJ ,IJ

−U
a,I ,I

−U
a,J ,J( )+

I>J (RIJ ≤LES−DIM )

N

∑ U
a,IJ ,IJ

−U
a,I ,IJ

−U
a,J ,IJ( )  (44) 

= −
I

N

∑U
a,I ,I

+
I>J (RIJ ≤LES−DIM )

N

∑ U
a,I ,I (J )

+U
a,J ,J (I )( ) ≠ 0,  

 where the partial terms 

U
a,X,X (Y )

= 4
i∈X

occ

∑
r∈X

vir

∑Uri
a,X uri

Y + vri
Y( ),   (45) 

 describe the contribution of a single fragment denoted Y to the full sum over all Y in 

XXa
U

,,
. 

Also, the following relation can be used, 

U
a,I ,I

−U
a,I ,IJ

=U
a,I ,I (J )

,   (46) 

 because (see Eq. (14)) the ESP for IJ  ( IJV ) runs over all fragments excluding I and J, 

whereas the ESP for I excludes the contribution from I. Therefore, in the difference 

expression only J terms remain. 
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Vri
I −Vri

IJ =Vri
I ,I (J ) ≡ uri

J + vri
J .   (47) 

a
U  in Eq. (44) is in general non-zero and can be further simplified to 

U
a
= −

I

N

∑U
a,I ,I

+
I>J (RIJ ≤LES−DIM )

N

∑ U
a,I ,I (J )

+U
a,J ,J (I )( )  (48) 

= −
I>J (RIJ >LES−DIM )

N

∑ U
a,I ,I (J )

+U
a,J ,J (I )( ),  

 where the completeness relation is used: 

I

N

∑U
a,I ,I

=
I

N

∑
J≠I

N

∑U
a,I ,I (J )

=
I>J

N

∑ U
a,I ,I (J )

+U
a,J ,J (I )( ).   (49) 

For the derivatives of Eq. (42) the collection of response terms for all IJ is 

I>J (RIJ >LES−DIM )

N

∑ Tr(∂D
I

∂a
uJ )+ Tr(∂D

J

∂a
u I )

⎡

⎣
⎢  (50) 

+
µν∈I
∑

λσ∈J
∑ ∂Dµν

I

∂a
Dλσ

J µν |λσ( )+
µν∈I
∑

λσ∈J
∑Dµν

I ∂Dλσ
J

∂a
µν |λσ( )⎤

⎦
⎥  

=
I>J (RIJ >LES−DIM )

N

∑ U
a,I ,I (J )

+U
a,J ,J (I )( )− 2

I≠J (RIJ >LES−DIM )

N

∑
ij∈I

occ

∑Sji
a,I uji

J + vji
J( ).  

 The first term on the right hand side of Eq. (50) cancels out with 
a

U  in Eq. (48). Since 

the derivative terms of Eq. (42) are already implemented,[83] one can obtain the fully 

analytic energy gradients for the ES-DIM approximation by calculating the following 

response contribution to the gradient: 

U
a
+ℜa = 4

I>J (RIJ ≤LES−DIM )

N

∑
K≠IJ
∑

µν∈IJ
∑

r∈K

vir

∑
i∈K

occ

∑ΔDµν
IJUri

a,K µν | ri( ).  (51) 

2.5  Implementation 
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To further facilitate solution of the SCZV equations, it is useful to reformulate 

them in the AO basis, thereby avoiding the expensive integral transformation.90 

Examining Eqs. (39,32,33), the main computational effort is spent on two-electron 

integral terms like K
klkl
Zrikl )|(∑  in Eq. (39). By utilizing the MO i  expansion over AOs 

µ , 

.= µµ
µ

iCi ∑   (52) 

 The two-electron integral terms in Eq. (39) can be transformed according to 

k∈K

vir

∑
l∈K

occ

∑(kl | ri)Zkl
K =

k∈K

vir

∑
l∈K

occ

∑Cµk
K∗Cνl

K (µν | ri)Zkl
K =

µν
∑(µν | ri) !Zµν

K ,  (53) 

 where  

.=~ occvir
K
l

K
kl

K
k

KlKk

K CZCZ νµµν
∗

∈∈
∑∑   (54) 

 Using Eq. (53) avoids the full transformation of the two-electron integrals to the MO 

basis, which leads to a significant reduction of the computation time and memory. 

However, IZµν
~  is not symmetric; this is inconvenient and can be further improved by 

symmetrizing it: 

Z µν
I
= 1
2
!Zµν
I + !Zνµ

I( ).   (55) 

 It is possible to rewrite the SCZV equations (Eq. (40)) using the symmetrized local Z-

vector element 
K
Z µν . 

K
Z µν  corresponds to the density matrix element µνD  in typical 

integral programs, and therefore the SCZV method can be implemented using standard 

CPHF codes. 
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The Cauchy-Schwarz inequality, which estimates the value of )|( ρσµν  based on 

the values of a smaller set of integrals with repeated indices, can be used in the SCZV to 

obtain a further reduction of computation time. The Cauchy-Schwarz inequality 

screening is usually applied to the maximum element of the factor by which the integrals 

of interest are multiplied. The SCZV procedure is more efficient because the Z-vector 

elements normally have smaller values than the density matrix elements, and therefore, 

the Cauchy-Schwarz integral screening can skip more terms. In the implementation of the 

response contribution, Eq. (37), the direct (AO basis) algorithm and the Cauchy-Schwarz 

inequality for the calculation of the two-electron integrals are included. As a result, the 

calculations do not need a large amount of disk space or memory. 

 

3.  Computational details 

To verify that the response contribution that has been derived and implemented in 

this study makes the FMO energy gradients fully analytic, analytic gradients are 

compared with numerical gradients for molecular systems taken from previous studies:80, 

91, 92 (H2O)64, the α -helix conformation of the alanine decamer (ALA)10 capped with -

OCH 3  and -NHCH 3  groups, chignolin (PDB ID: 1UAO) solvated by 157 water 

molecules, and the Trp-cage miniprotein construct (PDB ID: 1L2Y). The structures of 

(ALA)10 and 1L2Y were taken from earlier works.83, 92 Numerical gradients were 

computed with double differencing and a coordinate step of 0.005 Å  (except for (H2O)64 

with 6-311G(d), where a 0.0005 Å  step was used). 

For the fragmentation of a system that does not require fragmenting covalent 

bonds, such as a water cluster, the HOP operator is not needed. For the first test 
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calculation, a water molecule in (H2O)64 is assigned to a fragment. The geometrical 

structure of (H2O)64 was modeled by HyperChem, optimized by Amber94,93 and then 

reoptimized at the FMO-RHF/6-31G level.80 The optimized structure of (H2O)64 is 

depicted in Fig. 2a. 

For molecular systems in which fragmentation occurs across covalent bonds, the 

hybrid orbital operator contributes to the gradients both directly and via the response term 

from the Fock derivative, Eq. (25). The α -helix conformation of (ALA)10 with some 

intramolecular hydrogen bonds (shown in Fig. 2b) is chosen because in the case of 

incomplete analytic gradients it is expected to have large errors in the gradients compared 

to the β -strand or extended structures. Because this system is relatively small, the 

validity of the analytic gradients without approximations can also be accessed. 

The FMO method has been interfaced with the effective fragment potential (EFP) 

method, which explicitly treats solvent molecules by adding a one-electron potential to 

the Hamiltonian.91, 94 Chignolin is immersed in 157 water molecules described by EFPs, 

and its structure is optimized using the combined FMO/EFP method at the RHF/cc-pVDZ 

level.91 The optimized structure in Fig. 2c reproduces the PDB NMR structure well.80 

Fig. 2d depicts the structure of 1L2Y. Because 1L2Y is the largest system treated 

with the FMO method in this study, it is an appropriate test case for the application of the 

electrostatic dimer approximation which is necessary for efficient computations of large 

systems. In this calculation, the threshold for the ES-DIM approximation L DIMES− was set 

to the default value, 2.0 and all other approximations were turned off.34 

For systems fragmented across covalent bonds, i.e., (ALA)10, chignolin and 

1L2Y, a one residue/one fragment partition was adopted. The gradient calculations for 
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(H2O)64, (ALA)10, hydrated chignolin, and 1L2Y were performed at the RHF/6-31G(d) 

level and diffuse functions were added to the carboxyl groups of 1L2Y. Additionally, 

RHF/6-311G(d) was also used to calculate the gradients for (H2O)64. 

The computation time of the SCZV procedure is expected to be comparable to 

that of the SCC calculation. Thus, the timings of the calculations of fully analytic 

gradients in which both the SCC and SCZV steps were included were measured and 

compared. The timing calculations used the 32 node Soroban cluster with Intel Pentium 4 

CPU 3.2 GHz nodes connected by Gigabit Ethernet. Table I lists separately for 

monomers and dimers the number of GDDI groups in the gradient calculation for each 

system (in GDDI, in order to improve parallel efficiency, all computer nodes are divided 

into groups and individual monomer and dimer calculations are distributed dynamically 

among these groups). Note that the number of GDDI groups in the SCZV step is the same 

as in the SCC step. The parallel efficiency is calculated for the gradient and SCZV 

calculations for (H2O)64 using 1, 2, 4, 8, 16 and 32 nodes of the Soroban cluster. For this 

calculation, the number of GDDI groups is equal to the number of nodes. 

 

4.  Results and discussion 

4.1  Fully analytic energy gradients without approximations 

In this subsection, the fully analytic gradients without approximations is 

discussed. It is important to numerically verify that the gradients are fully analytic using 

0=
a

U  (Eq. 19). 

As mentioned previously, for (H2O)64, the energy gradients do not involve the 

HOP term and only the response term contributes to the analytic gradients. In Table II, 
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the root mean square (RMS) value in the numerical gradients became identical with the 

new analytic gradients (0.005997 a.u.). However, the RMS value in the old analytic 

gradients, in which only the response contribution is neglected, deviates by 0.0001 a.u. 

from the numerical and the analytic ones. For the maximum absolute gradient values 

(MAX grad.), the new analytic gradient value is in good agreement with the 

corresponding numerical value, while the conventional value differs by 0.00025 a.u. The 

latter is not a negligible error when aiming for fully analytic gradients. The root mean 

square (RMS) of the errors for the new analytic gradient relative to the numerical 

gradient (the RMS error in the analytic gradients) is negligibly small (0.000011 a.u.), 

which is an improvement by a factor of 20 over the RMS error in the old analytic 

gradients (0.000231 a.u.). This improvement is visualized in Fig. 3a, which plots the 

errors of the new analytic gradient and the old analytic gradient relative to the numeric 

gradient against the total 576 gradient elements. The new analytic gradient values 

converge to zero, while the old analytic gradient values have large deviations. 

For systems fragmented across covalent bonds, the HOP contribution to the 

response term must be considered. (ALA)10 is such a system and due to its size is a good 

test for calculating numerical gradients without approximations at a relatively moderate 

computational cost. Note that the old analytic gradient method that is illustrated here did 

include the direct contribution of HOP derivatives to the gradients, since this contribution 

was introduced in a previous study.84 Table II shows that the three types of gradients are 

in good agreement. Even though the RMS value in the old analytic gradients is very close 

to that of numerical gradients, the RMS errors and maximum absolute gradient error for 

the old analytic gradient deviates by significant amounts (0.000160 a.u. and 0.000580 
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a.u., respectively). On the other hand, the very small errors in the new analytic gradient 

values indicate that they are fully analytic and that the HOP contribution to the response 

term is properly included. In Fig. 3b, as in Fig. 3a, one can see that the new analytic 

gradients are fully analytic for every gradient element. Comparing Fig. 3b ((ALA)10) with 

Fig. 3a (the water cluster), the former has smaller gradient errors for the old analytic 

gradients. Since the response term is related to the ESPs, the environmental potential 

affects the water clusters more significantly than the peptide. 

Most biological processes occur in aqueous solution. To model one of these 

processes, one may consider a protein in a water droplet. For molecular dynamics and 

geometry optimization processes, an accurate solvent model must be combined with the 

application of FMO to the solute. As the first test calculation toward this goal, hydrated 

chignolin is chosen for the FMO/EFP framework. In order to obtain the fully analytic 

energy gradients in this framework, it is necessary to add the EFP derivatives to the Fock 

derivative term, Eq. (25) and probably to modify the A matrix in Eq. (38). In this study, 

however, the EFP-related many-body polarization contribution to the FMO ESP response 

term was neglected. Therefore, the FMO/EFP energy gradients are not fully analytic. So, 

the accuracy of the FMO/EFP new energy gradients is shown only for the solute (FMO) 

molecule (chignolin). As seen in Table II, the accuracy of the FMO/EFP new energy 

gradients is similar to that for the full treatment of FMO, but the maximum absolute 

gradient error is larger (0.000092 a.u.) than those for the other test systems, and there are 

slight deviations in the FMO/EFP new analytic gradients in Fig. 3c. Nevertheless, the 

maximum absolute new analytic gradient error is improved by a factor of 16 compared to 

the old analytic gradient value. This encouraging result provides motivation to develop 
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the fully analytic energy gradients for FMO/EFP as well as FMO combined with the 

polarizable continuum model (PCM).92, 95 

For the chosen systems, the wall-clock times required for the SCC, the SCZV, and 

the total FMO calculation were measured. Table III shows that for the gradient 

calculation without approximations for (H2O)64, the SCC calculation took 24.3 sec., 

which is comparable to 29.5 sec. in the corresponding SCZV calculation. These times are 

small relative to the total computational time of over 400 sec. For (ALA)10, the SCZV 

calculation takes only 64% of the computation time of the corresponding SCC 

calculation. For hydrated chignolin, the SCZV calculation requires a similar percentage 

of the computation time. These results illustrate why the Z-vectors converge more 

rapidly; the calculation of two-electron integrals is faster because the Cauchy-Schwarz 

inequality is more efficient when applied to the Z-vectors rather than to the monomer 

densities (used in ESPs or two-electron integrals for monomers). 

4.2  Fully analytic energy gradients in the ES dimer approximation 

The FMO energy gradients have been shown to be fully analytic by introducing 

the response contribution. The computation time in the calculation of the response term is 

comparable to or less than that required for the SCC calculation. This implies that 

although it is practical to calculate the response term itself, it is still expensive to 

calculate the fully analytic energy gradients for a larger molecule because of the 

difficulty in performing a large number of dimer SCF calculations without 

approximations. 

As discussed above, the fully analytic energy gradients with the ES-DIM 

approximation have been derived. The purpose of this subsection is to check numerically 
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that the FMO energy gradients are fully analytic within the ES-DIM approximation and 

to discuss the timings. 

The ES-DIM approximation was first applied to (H2O)64 using both the 6-31G(d) 

and 6-311(d) basis sets. Table II shows that with L DIMES− =2.0, the RMS value, the MAX 

gradient value and the RMS error for the new analytic gradients are identical to those 

without approximations. Additionally, the maximum gradient error is negligibly small. 

These results imply that the ES-DIM approximation is a suitable choice for this system. 

The errors for the old analytic gradient increase with the basis set, as can be seen 

in Table II. For example, the maximum gradient error increases from 0.000975 to 

0.002280 when going from 6-31G(d) to 6-311(d). The error in the new analytic vs 

numeric gradient is about 15 times smaller and is probably due to the error in the 

numerical gradient itself. There is also no basis set effect on the error when the new 

analytic gradient is employed. The pictorial representations of the errors in Fig. 3a and 3e 

demonstrate the quality of the gradients. 

For another system requiring fragmentation across covalent bonds, consider 

1L2Y, which consists of 20 amino acid residues. Since the calculation of numerical 

gradients for such a relatively large molecule is time-consuming, a subsystem is chosen, 

i.e., the 38 atoms defining 19 detached bonds between 20 fragments (for which atoms the 

error in the old analytic gradient is the largest as found in the earlier study84). With L

DIMES− =2.0, there are 92 SCF and 98 approximated (ES-DIM) dimers. In Table II (see 

also Fig. 3d), the corresponding RMS value and the maximum absolute gradient value 

show that the new analytic gradients are fully analytic in comparison to the numerical 

values. The corresponding RMS and MAX gradient errors are similar in accuracy to the 



www.manaraa.com

 38  

fully analytic gradient values of the other systems. The errors are much improved 

compared to those from the old analytic gradient calculation; especially for the MAX 

gradient which is more accurate by a factor of 27, indicating a significant contribution 

from the response term in this system. 

As shown in Table III, for (H2O)64, the total wall-clock time for the fully analytic 

gradient calculation with the approximation (261.0 sec.) is less than the timing without 

approximations (467.2 sec.). In comparing the SCZV and the SCC calculation for this 

water cluster, it is reasonable that the former took less computation time. When using the 

approximation, the ratio of the computation time in SCZV to SCC is normally less than 1. 

This implies that the SCZV calculation is faster; this trend is independent of the ES-DIM 

approximation. For 1L2Y, the SCZV calculations took approximately 70% of the time 

required for the SCC calculations, and it is expected that this ratio will decrease for larger 

systems. 

For (H2O)64, the parallel efficiency S(n), shown in Fig. 4, was calculated using the 

following expression: 

100,/=)( 1 ×
n
TTnS n   (56) 

 where 1T  and nT  represent the computation time using 1 node and n nodes, respectively. 

100 % efficiency means that the calculation is n  times faster on n  nodes. The results 

show that for (H2O)64 the parallel efficiency is over 97.8 % for all numbers of nodes 

(n=1, 2, 4, 8, 16 and 32) both in the total gradient calculation (solid line) and SCZV 

calculation (dashed line). For n=16, the parallel efficiency in the SCZV calculation drops 

slightly from that for n=8. For (H2O)64, 64 SCZV calculations should be distributed into 

16 nodes (divided into 16 GDDI groups). However, each SCZV calculation takes a 
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different amount of time, because the number of iterations and the integral screening 

depends upon the fragment; the GDDI calculations are dynamically divided over groups, 

and there is some granularity (i.e., some groups finish ahead of others). This is why the 

parallel efficiency drops at n=16. The superlinear scaling over 100 % for a small number 

of nodes is also observed in FMO-RHF calculations[89] and is thought to originate from 

external factors like CPU cache efficiency. 

 

5  Conclusions 

The CPHF equations and the Z-vector equations in the FMO framework have been 

derived to compute the fully analytic energy gradients. One outcome of this study is the 

derivation and implementation of the SCZV equations, by which the time-consuming Z-

vector equations of the whole system reduce to those of the monomer fragments. 

Additionally, the SCZV procedure is parallelized by the use of GDDI.89 It was shown that 

the FMO energy gradients are fully analytic in the electrostatic dimer approximation. 

This leads to a significant reduction of the total computation time. Nearly fully analytic 

energy gradients have been successfully implemented for the combined FMO/EFP 

method as well. 

The use of the SCZV procedure is not limited to the gradient calculation. The 

calculation of the second derivative (Hessian) matrix is necessary to calculate important 

properties such as the IR spectrum, Raman spectrum and NMR chemical shifts. To 

calculate the fully analytic Hessian, one must solve the CPHF equations, and the SCZV 

procedure would play an essential role. The SCZV procedure could also be found useful 

in other fragmentation methods that require the response term (some methods87, 96 do not 
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need it with respect to the field, although the Mulliken charge derivatives do require it97, 

80). 

The analytic gradient equations have been derived at the Hartree-Fock level of 

theory. For proteins, dispersion is crucial for determining the folded structure58 and for 

protein-ligand binding. Therefore, the fully analytic energy gradient should be extended 

to electron correlation methods such as MP2. For practical calculations, such as FMO-

MD to study protein folding, it will be necessary to develop the fully analytic gradient 

with the point charge (ESP-PTC) approximation. 

As mentioned earlier, MD simulations are an important application of FMO, 

however, FMO-MD has been limited mainly to molecular clusters.70, 71, 72, 75, 76, 77, 78 As 

found in this study, with the introduction of fully analytic energy gradients, reliable MD 

simulation with perfect energy conservation will now be possible. 
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Figure 1. Schematic diagram of the self-consistent Z-vector (SCZV) procedure.
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Figure 2a. Geometric structures of (H2O)64, (colored by chemical elements as light grey 

(H), dark grey (C), blue (N), and red (O)).
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Figure 2b. Geometric structures of (ALA)10 capped with CH 3CO- and -NHCH 3  groups, 

(colored by chemical elements as light grey (H), dark grey (C), blue (N), and red (O)). 
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Figure 2c. Geometric structures of chignolin solvated by 157 water molecules (colored by 

chemical elements as light grey (H), dark grey (C), blue (N), and red (O)). 
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Figure 2d. Geometric structures of 1L2Y (colored by chemical elements as light grey (H), 

dark grey (C), blue (N), and red (O)). 
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Figure 3a. Errors of the analytic gradient elements relative to the numeric gradient 

elements for (H2O)64. Black diamond: fully analytic energy gradients calculated at the 

RHF/6-31G(d) level. Yellow square: the conventional gradients. 
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Figure 3b. Errors of the analytic gradient elements relative to the numeric gradient 

elements for (ALA)10 capped with CH 3O- and -NHCH 3  groups calculated at the RHF/6-

31G(d) level. Black diamond: fully analytic energy gradients. Yellow square: the 

conventional gradients. 
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Figure 3c. Errors of the analytic gradient elements relative to the numeric gradient 

elements for chignolin solvated by 157 water molecules calculated at the RHF/6-31G(d) 

level. Black diamond: fully analytic energy gradients. Yellow square: the conventional 

gradients. 
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Figure 3d. Errors of the analytic gradient elements relative to the numeric gradient 

elements for 1L2Y calculated at the RHF/6-31G(d) level. Black diamond: fully analytic 

energy gradients. Yellow square: the conventional gradients. 
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Figure 3e. Errors of the analytic gradient elements relative to the numeric gradient 

elements for (H2O)64 at the RHF/6-311G(d). Black diamond: fully analytic energy 

gradients. Yellow square: the conventional gradients. 
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Figure 4. The parallel efficiency using the PC cluster of 1, 2, 4, 8, 16 and 32 CPUs (Intel 

Pentium 4 3.2 GHz). Solid line: for the total gradient calculation. Dashed line: for the 

SCZV calculation. 
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Table I. The number of GDDI groups used in dividing 31 nodes 

  monomer step   dimer step 
(H2O)64   16   16 
(ALA)10   5   15 

hydrated chignolin   5   15 
1L2Y   10   15 
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Table II. The root mean square (RMS) and the maximum absolute values (MAX grad.) of 

the gradient elements for FMO2-RHF. RMS of the errors of the analytic gradients 

relative to the numeric gradients (RMS error) and the error in the maximum absolute 

gradient values (MAX error). All values are in a.u. 

 

 

gradient   RMS   MAX grad.   RMS error   MAX error 
(H2O)64 without approximations, 6-31G(d) 

numeric  0.005997  0.014090  - - 
analytic  0.005997  0.014094  0.000011 0.000035 
conventional  0.006132  0.014347  0.000231 0.000961 

(H2O)64 with L DIMES− =2.0, 6-31G(d) 
numeric  0.005997  0.014090   -   - 
analytic  0.005997  0.014094  0.000011  0.000034 
conventional  0.006132  0.014347  0.000232  0.000975 

(H2O)64 with L DIMES− =2.0, 6-311G(d) 
numeric  0.007467  0.018020   -   - 
analytic  0.007469  0.018029  0.000003  0.000010 
conventional  0.007745  0.018507  0.000433  0.002280 

(ALA)10 without approximations, 6-31G(d) 
numeric  0.011658  0.043197   -   - 
analytic  0.011664  0.043222  0.000009  0.000039 
conventional  0.011655  0.043169  0.000160  0.000580 

Hydrated (EFP) chignolin without approximations, 6-31G(d) 
numeric  0.000284  0.002010   -   
fully analytic  0.000280  0.001995  0.000017  0.000092 
conventional  0.000215  0.001542  0.000191  0.001501 

1L2Y with L DIMES− =2.0, 6-31G(d) 
numeric  0.019779  0.047540   -   - 
analytic  0.019780  0.047543  0.000015  0.000037 
conventional  0.019822  0.047418  0.000335  0.001001 
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Table III. Wall-clock time in the SCC, SCZV and the total computation using a 31 single 

3.2 GHz Pentium 4 cluster (all in seconds), FMO2-RHF/6-31G(d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  SCC   SCZV   TOTAL 
(H2O)64 without approximations 

analytic  24.3  29.5  467.2 
conventional  23.0   -  431.4 

(H2O)64 with L DIMES− =2.0 

analytic  29.4 28.1 261.0 
conventional  24.3 - 227.8 

(ALA)10 without approximations 
analytic  359.7  230.4  1240.3 
conventional  358.4   -  1016.3 

hydrated chignolin without approximations 
analytic  1383.6  883.2  7299.8 
conventional  1382.4   -  6419.2 

1L2Y with L DIMES− =2.0 
analytic  3429.1  2320.7  12942.1 
conventional  3380.4   -  10597.1 



www.manaraa.com

 61  

Chapter 3. Analytic gradient for fragment molecular orbital density functional 

theory 

A paper to be submitted to The Journal of Chemical Theory and Computation 

Kurt R. Brorsen, Federico Zahariev, Hiroya Nakata, Mark S. Gordon 

 

Abstract 

 The equations for the response terms for the fragment molecular orbital (FMO) 

method interfaced with the denisty functional theory (DFT) gradient are derived and 

implemented. Compared to the previous FMO-DFT gradient that lacks response terms, 

the FMO-DFT analytic gradient has improved accuracy for a variety of functionals when 

compared to numerical gradients. The FMO-DFT gradient agrees with the fully ab initio 

DFT gradient in which no fragmentation is performed, while reducing the non-linear 

scaling associated with standard DFT. Solving for the response terms requires the 

solution of the coupled perturbed Kohn-Sham equations (CPKS) where the CPKS 

equations are solved through a decoupled Z-vector procedure called the self-consistent Z-

vector method.  FMO-DFT is a non-variational method and the FMO-DFT gradient is 

unique compared to standard DFT gradients in that the FMO-DFT gradient requires terms 

from both DFT and time-dependent DFT theories. 

 

1. Introduction 

The fragment molecular orbital (FMO) method1 is one of many techniques2-7 that 

seek to reduce the non-linear scaling of standard quantum chemical methods by 

fragmentation. FMO has been applied to many biological8-10 and inorganic systems11,12. 
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As electron correlation plays an important role in many systems of chemical interest, the 

FMO method was interfaced with density functional theory (DFT), including an energy 

gradient, in 2003.13 In the FMO prescription, the individual fragments (monomers) are 

iterated to self-consistency.14 However, if pairs of fragments (dimers) are included 

explicitly (as in the FMO2 level of theory), the dimers are not iterated to self-consistency. 

Because the dimer calculations are not iterated to self-consistency, it is necessary, even 

for first order derivatives, to include response terms that arise from the derivatives of the 

molecular orbital coefficients with respect to the nuclear coordinates.15,16  Similar to other 

FMO gradient implementations at the time,15-18 response terms for the FMO-DFT 

gradient were not included due to the complexity of solving for the response terms. The 

authors assumed that the contribution of the response terms to the gradient would be 

small and therefore could be ignored in most circumstances.  However, the inclusion of 

response terms improves the efficiency of geometry optimizations, while for FMO 

molecular dynamics simulatons,19-21 the neglect of the response terms in the energy 

gradient results in poor energy conservation in the microcanonical ensemble.19 

Additionally, the error in the analytic gradient prevents the implementation of semi-

analytic hessians (i.e., finite differences of analytic gradients). The lack of semi-analytic 

hessians means that the FMO method must use fully numerical hessians. Fully numerical 

Hessians can be computationally intense and are prone to error, thereby limiting the 

applicability of FMO for finding transition states and the verification of potential energy 

minima. 

Because of the shortcomings in the original FMO gradient, the analytic FMO 

restricted Hartree-Fock (RHF) gradient, including response terms, was derived and 
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implemented.16 The response terms were included through the self-consisted Z-Vector 

(SCZV) method. The Z-Vector22-24 is calculated in the Z-vector “field” of the other 

fragments. Since the derivation of the FMO-RHF response terms, further improvements 

to the FMO gradient have followed, including extensions to unrestricted Hartree-Fock 

(UHF),25 2nd order Moller-Plesset perturbation theory (MP2), 26 and the electrostatic point 

charge (ESP-PC) approximation.27,28 The analytic energy gradient has also been 

interfaced with the polarizable continuum model (PCM),29 and the effective fragment 

potential (EFP).30 Additionally, FMO analytic hessians have been implemented for both 

RHF and unrestricted HF (UHF).31 

It has been demonstrated that the improved FMO-RHF gradient eliminates the 

lack of energy conservation for FMO-MD simulations.21 In the present work, the 

derivation of the fully analytic FMO-DFT method is presented and the implementation of 

the method is discussed.  

As the Kohn-Sham and coupled perturbed Kohn-Sham (CPKS) equations32 are 

similar to the Hartree-Fock and coupled perturbed Hartree-Fock equations, the derivation 

and implementation presented in the present study closely follows that of the FMO-RHF 

analytic gradient.16  

While the FMO-DFT derivation presented below is similar to that of FMO-RHF, 

the derivation is unique when compared to other DFT gradients. Because the FMO2-DFT 

method is not variational, first order derivatives require higher order functional 

derivatives than do standard DFT gradients.  The higher order functional derivatives 

normally arise in time-dependent DFT (TDDFT) calculations and therefore the FMO-

DFT gradient employs both DFT and TDDFT theory.  
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2. Analytic gradient for FMO-DFT 

The FMO2-DFT energy expansion is 

E =
I

N

∑ ′EI +
I>J

N

∑ ( ′EIJ − ′EI − ′EJ )+
I>J

N

∑ Tr(ΔDIJVIJ ),  (1) 

′EX is the internal fragment energy of monomer or dimer X, VIJ is the matrix of the 

electrostatic potential for dimer IJ, and ΔDIJ is the dimer density difference matrix,  

ΔDIJ = DIJ − (DI ⊕DJ ).  (2) 

 In Eq. (2), DX is the density of fragment X. The internal fragment energy is defined as  

′EX =
µν∈X
∑ Dµν

X hµν
X + 1

2 µνλσ∈X
∑ Dµν

X Dλσ
X − cx

2
Dµλ

X Dνσ
X⎡

⎣⎢
⎤
⎦⎥
µν | λσ( )+ΕXC

X +ΕNR
X ,  (3) 

hµν
X is the one-electron Hamiltonian of monomer or dimer X, cx is the scaling factor for 

hybrid functionals, and µν |λσ( )  is a two electron integral in the atomic orbital basis. 

The nuclear repulsion energy ENR
X

 is defined as  

ENR
X =

Β∈X
∑

Α(∈X )>Β
∑ ΖΑΖΒ

RΑΒ

,  (4) 

ΖΑ is the nuclear charge of atom A, and RΑΒ is the distance between atoms A and B. ΕXC
X

is the exchange-correlation energy. The exchange-correlation energy E xc
X ρ X⎡⎣ ⎤⎦   is a 

functional of the density of fragment X,  

ρ X !r( ) = Dµν
X φµ

X !r( )φν
X !r( )

µ,ν∈X
∑ ,  (5) 

where  φµ
X !r( )  are atomic orbitals in fragment X. 
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If fragmentation occurs across a covalent bond, the hybrid orbital projection (HOP) 

contribution33  

i∈X

occ

∑ 2 i P̂X i =
µν∈X
∑ Dµν

X Pµν
X ,  (6) 

must be added to EX
' ; P̂X  is the hybrid projection operator 

P̂X =
k∈X
∑ Βκ θK θK ,  (7) 

θK  is the hybrid orbital and Βκ  is a constant. 

The matrix in Eq. (1) is formed from one and two-electron contributions: 

Vµν
IJ =

K≠IJ
∑ uµν

K + vµν
K( ).  (8) 

The one-electron and two-electron parts are defined in Eqs. (9) and (10), respectively. 

=
Α∈Κ
∑ µ −ΖΑ

r − RΑ

ν ,
    

 (9) 

=
λσ∉Κ
∑ Dλσ

Κ µν | λσ( ).  (10) 

Calculation of the two-electron terms is expensive, so in most FMO calculations, a cutoff 

value is specified such that for monomers separated by a distance greater than the cutoff 

value, the two-electron term in the electrostatic potential (ESP) is approximated using 

point charges (PC) as  

Α∈Κ
∑ µ −QΑ

r − RΑ

ν .  (11) 

The approximation is called the ESP-PC approximation34 and is used in most FMO 

calculations. 
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The differentiation of the total FMO-DFT energy contains two components. One 

component contains terms from the internal fragment energies, ′EX ; the second 

component contains terms from the ESP. The derivative of the internal fragment energy, 

′EX , with respect to nuclear coordinate a is  

∂ ′EX

∂a
=

µν∈X
∑ Dµν

X ∂hµν
X

∂a
+ 1
2 µνλσ∈X
∑ Dµν

X Dσλ
X − cx

2
Dµλ

X Dνσ
X⎡

⎣⎢
⎤
⎦⎥
∂ µν | λσ( )

∂a
+ Dµν

X vxc
X ρ X⎡⎣ ⎤⎦

!r( )
∂ φµ

X !r( )φν
X !r( )( )

∂a
d!r∫ +

 

µν∈X
∑ Dµν

X ∂Pµν
X

∂a
− 2

i, j∈X

occ

∑ Sji
a,X ′Fji

X − 4
i∈X

occ

∑
r∈X

vir

∑ Uri
a,XVri

X + ∂ΕNR
X

∂a
+W X

XC.  (12) 

The superscript a on S and U refer to a derivative with respect to coordinate a. The 

derivative of E xc
X ρ X⎡⎣ ⎤⎦  

with respect to the nuclear coordinate a is found by using Eq. (5) 

and the functional form of the chain rule.  

vxc
X ρ X⎡⎣ ⎤⎦

!r( )  
is the exchange-correlation potential, 

δExc
X ρ X⎡⎣ ⎤⎦

δρ X !r( ) ,
which is a functional of the 

density. Most exchange-correlation functionals are computed on a grid. In Eq.(12), W X
XC  

arises from the derivative of the grid weights of E xc
X ρ X⎡⎣ ⎤⎦ .35  The reader is referred to Ref. 

35 for more details about the derivative of grid weights. The internal fragment Fock 

matrix element is 

′Fij
X = hij

X +
k∈X

occ

∑ 2(ij | kk)− cx (ik | jk)[ ]+ i vxc
X j( )+ PijX ,  (13) 

i vxc
X j( )  

is a matrix element of the exchange-correlation potential: 



www.manaraa.com

 67  

i vxc
X j( ) = Cµi

X*Cν j
X φµ

X* !r( )vxcX
!r( )∫ φν

X !r( )d!r
µ,ν∈X
∑ ,  (14) 

Pij
X is a matrix element of the HOP matrix 

Pij
X = Cµi

XPX
µνCν j

X

µν
∑ ,  (15) 

and the overlap derivative matrix Sij
a,X

 is  

Sij
a,X =

µν∈X
∑ Cµi

X* ∂Sµν
X

∂α
Cν j

X .  (16) 

The term Sji
a,X ′Fji

X in Eq. (12) arises from the derivatives of the density in Eq. (3) with 

respect to a nuclear coordinate. The orthonormality condition22 

Sij
a,X +Uji

a,X +Uij
a,X = 0  (17) 

was used to produce the Sji
a,X ′Fji

X  term. 

The following definition will be used for the response term Uri
a,X  

U
a,X,Y

= 4
i∈X

occ

∑
r∈X

vir

∑ Uri
a,XVri

Y ,  (18) 

The response term arises from the derivative of the molecular orbital coefficient 

∂Cµi
X

∂a
=

m∈X

occ+vir

∑ Uri
a,XCµm

X .  (19) 

Uri
a,X

 is found by solving the CPKS equations.  

The differentiation of the ESP term with respect to nuclear coordinate a is  
 
∂
∂a
Tr(ΔDIJVIJ ) =

µν∈IJ
∑ ΔDµν

ΙJ

Κ≠IJ

all

∑ ∂uµν
Κ

∂a
+

µν∈Κ
∑ Dλσ

Κ ∂ µν | λσ( )
∂a

⎡

⎣
⎢

⎤

⎦
⎥  
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−2 W IJ
µν

µν∈IJ
∑ ∂Sµν

IJ

∂a
+ 2 W I

µν
µν∈I
∑ ∂Sµν

I

∂a
+ 2 W J

µν
µν∈J
∑ ∂Sµν

J

∂a
+Ua,IJ ,IJ −Ua,I ,IJ −Ua,J ,IJ  

−2
K∈IJ

all

∑
µν∈Κ
∑ ΔXµν

Κ(ΙJ )Sµν
a,Κ + 4

Κ≠ΙJ

all

∑
µν∈IJ
∑

r∈K

vir

∑
i∈K

occ

∑ ΔDµν
ΙJ Uri

a,Κ µν | ri( ),    (20) 

where 

Wµν
X = 1

4 µν∈X
∑ Dµλ

X Vλσ
ΙJ Dσν

X ,  (21) 

and 

ΔXµν
K (IJ ) = 1

4 λσ∈Κ
∑ Dµλ

Κ

ζη∈IJ
∑ ΔDζη

IJ ζη | λσ( )⎡

⎣
⎢

⎤

⎦
⎥Dσν

Κ .  (22) 

Collecting all of the terms U
a,X,Y

 from Eqs. (12) and (20) forms the equation  

Ua = − Ua,I ,I

I

N

∑ − Ua,IJ ,IJ −Ua,I ,I −Ua,J ,J( )
I>J

N

∑ + Ua,IJ ,IJ −Ua,I ,IJ −Ua,J ,IJ( )
I>J

N

∑ .  (23) 

U
a

is equal to zero when either no approximations are applied to the calculation of the 

ESP or approximations to the calculation of the ESP are applied uniformly. For most 

FMO calculations, the calculation of the ESP is approximated, but not uniformly and 

therefore the contribution from U
a

must be included in the gradient.  The contribution 

from U
a

has previously been included for the FMO-RHF method.27 As U
a

 only contains 

terms involving Uri
a,X and Vri

Y , the contributions to the gradient from U
a

are identical for 

the FMO-RHF and FMO-DFT methods and the interested reader is referred to the 

previous study.16,27 For the purposes of the derivation in the present study, U
a

will be 

treated as equal to zero; therefore, the only contributions to the gradient from Uri
a,K arise 
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from the last term of Eq. (20).  To find the last term of Eq. (20), it is necessary to solve 

the CPKS equations. 

 

3. Coupled Perturbed Kohn-Sham equations for FMO-DFT 

The FMO-DFT analytic gradient only contains response term contributions from 

monomers.  The response term contributions can be found by exploiting the diagonal 

nature of the Fock matrix to solve the CPKS equations32 for the FMO-DFT method. 

For monomer I, the MO Fock matrix can be written as  

Fij
I = ′Fij

I +Vij
I  

= !hij
I +

k∈Ι

occ

∑ 2(ij | kk)− cx (ik | jk)[ ]+ i vxc
X j( )+ PijΙ ,  (24) 

The FMO one-electron Hamiltonian is 

!hij
I = hij

I +Vij
I .  (25) 

The derivative of the monomer Fock matrix with respect to a nuclear coordinate is 

∂Fij
I

∂a
= ∂
∂a
!hij
I +

k∈Ι

occ

∑ 2(ij | kk)− cx (ik | jk)[ ]+ i vxc
X j( )+ PijΙ⎛

⎝⎜
⎞
⎠⎟
.  (26) 

Taking the derivative of the right side and rearranging terms, the derivative of the 

monomer Fock matrix with respect to nuclear coordinate can be written as 

∂Fij
I

∂a
= Fij

a,I +
k∈Ι

occ+vir

∑ Uki
a,ΙFkj

Ι +Ukj
a,ΙFik

Ι( )+
k∈Ι

occ+vir

∑
l∈Ι

occ

∑ Ukl
a,Ι ′Αij ,kl +

K≠I
∑

k∈Κ

occ+vir

∑
l∈Κ

occ

∑ Ukl
a,Κ4(ij | kl),  

(27) 

The orbital Hessian matrix A’ is defined as 

′Aij,kl = 4(ij | kl)− cx (ik | jl)+ (il | jk)[ ]+ 4 ij fxcX kl( ),  (28) 
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ij fxc
X kl( )  

is the matrix element of the exchange-correlation kernel: 

fxc
X ρ X⎡⎣ ⎤⎦

!r, !′r( ) = δ 2Exc
X ρ X⎡⎣ ⎤⎦

δρ X !r( )δρ X !′r( )  (29)  

ij fxc
X kl( ) = Cµi

X*Cν j
XCρk

X*Cσ l
X φµ

X* !r( )φν
X !r( ) fxcX

!r, !′r( )φρ
X* !′r( )φσ

X !′r( )d!r d!′r∫∫
µ,ν ,ρ,σ∈X
∑  (30) 

The derivative of the Fock matrix element is 

Fij
a,I = hij

a,I +Vij
a,I +

k∈Ι

occ

∑ 2(ij | kk)α − cx (ik | jk)
α⎡⎣ ⎤⎦ + i vxc

X j( )a + Pijα ,Ι.  (31) 

hij
a,I

 is the derivative of the one-electron Hamiltonian 

hij
a,I =

µν∈I
∑ Cµi

Ι*Cν j
Ι ∂hµν

Ι

∂a
,  (32) 

The derivative of the two-electron integral (ij | kl)a  is 

(ij | kl)a =
µνρσ
∑ Cµi

Ι*Cν j
Ι Cρk

Ι*Cσ l
Ι ∂(µν | ρσ )

∂a
,  (33) 

and the derivative of the exchange-correlation potential matrix elements i vxc
X j( )a  is 

i vxc
X j( )a = Cµi

X*Cν j
X vxc

X !r( )
∂ φµ

X* !r( )φν
X !r( )( )

∂a
d!r∫

µ,ν∈X
∑

+2 Cµi
X*Cν j

XCρk
X*Cσ l

X φµ
X* !r( )φν

X !r( ) fxcX
!r, !′r( )

∂ φρ
X* !′r( )φσ

X !′r( )( )
∂a

d!r d!′r∫∫
µ,ν ,ρ,σ∈X
∑

 (34) 

The functional form of the chain-rule and the relationship 

δvxc
X ρ X⎡⎣ ⎤⎦

!r( )
δρ X !′r( ) =

δ 2Exc
X ρ X⎡⎣ ⎤⎦

δρ X !r( )δρ X !′r( ) = fxc
X ρ X⎡⎣ ⎤⎦

!r, !′r( )  (35) 

is used to derive i vxc
X j( )a . 
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The ESP derivative Vij
a,I

 is defined as 

Vij
a,I =

K∉I
∑ uij

a,K +
k∈Κ

occ

∑ 2 ij | kk( )α⎛
⎝⎜

⎞
⎠⎟
.  (36) 

The one electron derivative contribution, uij
a,K , in Eq. (36) and the HOP derivative  in 

Eq. (31) are defined in an analogous manner to the derivative of the one-electron 

Hamiltonian hij
a,I  in Eq. (32). 

Further rearrangement of Eq. (26) leads to 

∂Fij
I

∂a
= Fij

a,I − ε j
I − ε i

I( )Uij
a,I − Sij

a,Iε j
I −

k,l∈Ι

occ

∑ Skl
a,Ι 2(ij | kl)− cx (ik | jk)[ ]+

k∈Ι

vir

∑
l∈Ι

occ

∑ Ua,I ′Aij,kl

_
K≠I
∑

k,l∈Κ

occ

∑ 2Skl
a,Κ (ij | kl) +

Κ≠Ι
∑

k∈Κ

vir

∑
l∈Κ

occ

∑ Ukl
α ,Κ4(ij | kl),  (37) 

where  is the energy of MO i of fragment I. The orthonormality condition16 of Eq. (13) 

was used to produce Eq. (37).  

For each fragment I, Eq. (37) contains Ukl
a,X

 contributions from all fragments in 

the system.  Therefore, the ∂Fij
X / ∂a  for each fragment must be collected and solved 

together.  The  ∂Fij
X / ∂a  for all fragments can be written in matrix form as 

AUa = B0
a,  (38) 

The fragment block diagonal part of matrix A is  

Aij,kl
I ,I = δ ikδ jl ε j

I − ε i
I( )− 4(ij | kl)− cx (ik | jl)+ (il | jk)[ ]+ 4 ij fxcX kl( ){ },  (39) 

the fragment off-diagonal part is  

Aij,kl
I ,K = −4(ij | kl),  (40) 

and the ij th element of the vector B0
a  for fragment I is 
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B0,ij
a,I = Fij

a,I − Sij
a,Iε j

I −
kl∈Ι

occ

∑ Skl
a,Ι 2(ij | kl)− (ik | jl)[ ]−

Κ≠Ι
∑

kl∈Κ

occ

∑ 2Skl
a,Κ (ij | kl).  (41) 

The response terms for the FMO-DFT gradient can be included by applying the SCZV 

procedure to Eq. (38) in a manner identical to the FMO-RHF gradient. Of course, the 

definitions of the matrix A and vector B0
a  are different for FMO-DFT.  The reader 

interested in the SCZV procedure for the FMO-DFT method is therefore directed to the 

previous study of the analytic gradient for the FMO-RHF method.16 

 

4. Computational Details 

To demonstrate that the inclusion of the response terms makes the FMO-DFT 

gradient fully analytic, gradient calculations with and without the response terms 

included were compared to numerical gradients. For comparison purposes, the error in 

the numerical gradient is set to zero. To test the accuracy of the gradient for systems with 

and without fragmentation across a covalent bond, two test systems were chosen: a 

(H2O)32 cluster (Figure 1a) and an alanine (ALA)7 polypeptide chain in an alpha helix 

configuration (Figure 1b). For both test systems, calculations were performed with 

multiple density functionals. A distance cutoff of 2.0 was used for the ESP-PTC 

approximation (RESPPC) and the electrostatic dimer approximation (RESDIM) for all 

calculations. For the RESPPC and RESDIM cutoffs, the distance between two atoms A 

and B is defined relative to the van der Waals radii of atoms A and B, RAB / (RA + RB ) , 

where RAB is the Euclidean distance between atoms A and B and is the van der Waals 

radius of atom A. The numerical energy gradient was calculated using double 
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differencing with a step size of 0.0001 Å and 0.0005 Å for the (H2O)32 cluster and the 

(ALA)7 polypeptide chain respectively. 

For the 32-water cluster, an additional calculation was performed without the 

ESP-PTC approximation or the electrostatic dimer approximation (a cutoff of 0.0) to 

quantify how much error is introduced into the gradient calculation through the use of the 

two approximations. For the water cluster, each water molecule was treated as a 

fragment, while for the alanine polypeptide chain, each alanine unit was treated as a 

fragment.  

Additional DFT calculations in which no fragmentation was used were performed 

on the water cluster systems to check the accuracy of the FMO-DFT gradient relative to 

fully ab initio methods.  For the additional calculations, the B3LYP, PBE0 and SVWN 

functionals were used.  All the DFT calculations were performed using the 6-31G(d) 

basis.  

All FMO-DFT and DFT calculations in this study used a grid to evaluate the 

exchange-correlation functional. The grid contained 96 radial points for the Euler-

MacLaurin quadrature and 302 angular points for the Lebedev grid. 

 

5. Results and Discussion 

Results from the gradient calculations for the water test system are presented in 

Table 1. For all functionals, inclusion of the response terms results in a more accurate 

gradient. For the water system, the error in each gradient element with and without 

response terms is presented in Figure 2 for calculations using the B3LYP functional and 

Figure 3 for calculations using all non-B3LYP functionals, and Hartree-Fock. For the 
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four water cluster systems for which calculations were performed with the 6-31G(d) basis 

and the ESP-PTC and electrostatic dimer approximations, the root mean square (RMS) 

error improves with the inclusion of response terms by a minimum factor of 13 to a 

maximum factor of 26.  

There is a negligible increase in the gradient error when the ESP-PTC and 

electrostatic dimer approximations are used for the B3LYP water cluster. Specifically, 

the RMS error increases from 0.000017 Hartree/Bohr to 0.000023 Hartree/Bohr when the 

approximations are included in the calculation. Although the negligible increase in error 

indicates that the ESP-PTC and electrostatic dimer approximations can reliably be 

applied in FMO-DFT gradient calculations, care must be taken when using the ESP-PTC 

approximation. A previous study27 using the FMO-RHF method has determined that the 

vdw radius cutoff for the ESP-PTC approximation should be set above 1.5 for accurate 

calculations. To assess the effect of the basis set, a test calculation was performed with 

the 6-311G(2d,2p) basis for the water cluster system with the B3LYP functional. 

Inclusion of the response terms reduces the RMS error for the system by more than a 

factor of 18.  The factor is similar in magnitude to that obtained from calculations that use 

the 6-31G(d) basis set, indicating that the inclusion of the response terms gives an 

accurate gradient for any basis set. 

An additional calculation was performed on the water cluster using the FMO-

RHF method (Figure 3d) to compare the accuracy of the FMO-DFT gradient to the FMO-

RHF gradient. For the FMO-RHF gradient, the inclusion of the response terms reduces 

the RMS error by a factor of 23. The reduction in the RMS error for the FMO-RHF 

gradient is similar in magnitude to the reduction in the RMS error for the FMO-DFT 
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gradient when response terms are included, and indicates that the analytic gradient for 

FMO-DFT is as accurate as that for the FMO-RHF method. 

Results from the gradient calculation on the alanine peptide system are presented 

in Table 2. Like the water system, inclusion of the response terms results in a more 

accurate gradient for all test systems. For the alanine peptide system, the errors in each 

gradient element with and without the response terms included are presented in Figure 4. 

The RMS error improves by a factor of 34 for the B3LYP functional and 36 for PBE0 

functional. A previous study5 found that the FMO-RHF gradient is accurate for a system 

of bonded fragments. Therefore, a calculation at the FMO-RHF/6-31G(d) level of theory 

was performed on the alanine peptide system.  Inclusion of the response terms for the 

alanine peptide system at the FMO-RHF/6-31G(d) level of theory improves the RMS 

error by a factor of 29.  Since the decrease in the RMS error for the FMO-RHF gradient 

is of the same order of magnitude as that for the FMO-DFT gradient, the FMO-DFT 

gradient is as accurate as the FMO-RHF gradient for systems with either bonded or non-

bonded fragments. 

Comparison of the FMO-DFT gradient with the DFT gradient with no 

fragmentation of the system is presented in Table 3. For all three functionals, the FMO-

DFT gradient reproduces the DFT gradient. Of the three test functionals, the maximum 

RMS deviation of the FMO-DFT gradient from the DFT gradient is .0016 Hartree/Bohr 

with the SVWN functional.  For the three test functionals, the largest difference in any 

single gradient element is 0.00554 Hartree/Bohr and occurs when the B3LYP functional 

is used.  
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6. Conclusions 

 For ab initio methods, accurate gradients are a necessity for the calculation of 

properties, verification of potential energy minimum and molecular dynamics 

simulations. In the present study, the analytic gradient has been derived and the 

implementation has been discussed for the FMO2-DFT method using the SCZV 

procedure previously derived for the FMO-RHF gradient.  Inclusion of the response 

terms results in a more accurate gradient when compared to numerical gradients for all 

test systems. Given the increased accuracy, the response terms should be included for all 

FMO-DFT MD calculations. The FMO-DFT gradient reproduces the DFT gradient in 

which no fragmentation has been performed and is a potential linearly scaling DFT 

method that can be combined with molecular dynamics. Response terms are now 

included in the FMO gradient for RHF, UHF, MP2, and DFT, and a future promising 

research direction will be to extend the analytic gradient to other FMO methods, such as 

multilayer FMO,36 three body FMO,37 FMO with an auxiliary basis set,38 and the 

effective fragment molecular orbital method.39  
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Figure 1a. Geometric structure of (H2O)32 [colored by chemical elements as black (C), 

red (O), blue (N), and gray (H)]. 
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Figure 1b. Geometric structures of (Ala)7 [colored by chemical elements as black (C), red 

(O), blue (N), and gray (H)]. 
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Figure 2a. Error of each gradient element relative to the numeric gradient for the (H2O)32 

test system for (a) B3LYP/6-31G(d), RESDIM= 2.0, RESPPC= 2.0. Red squares are the 

gradient with response terms included in the gradient. Blue squares are the gradient 

without response terms included in the gradient. 
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 Figure 2b. Error of each gradient element relative to the numeric gradient for the (H2O)32 

test system for  B3LYP/6-311G(2d,2p), RESDIM= 2.0, RESPPC= 2.0. Red squares are 

the gradient with response terms included in the gradient. Blue squares are the gradient 

without response terms included in the gradient. 
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Figure 2c. Error of each gradient element relative to the numeric gradient for the (H2O)32 

test system for B3LYP/6-31G(d), RESDIM=0.0, RESPPC=0.0. Red squares are the 

gradient with response terms included in the gradient. Blue squares are the gradient 

without response terms included in the gradient. 
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Figure 3a. Error of each gradient element relative to the numeric gradient for the (H2O)32 

test system for BLYP/6-31G(d). Red squares are the gradient with response terms 

included in the gradient. Blue squares are the gradient without response terms included in 

the gradient. RESDIM and RESPPC were set to 2.0 for all calculations. 
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Figure 3b. Error of each gradient element relative to the numeric gradient for the (H2O)32 

test system for PBE0/6-31G(d). Red squares are the gradient with response terms 

included in the gradient. Blue squares are the gradient without response terms included in 

the gradient. RESDIM and RESPPC were set to 2.0 for all calculations. 
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Figure 3c. Error of each gradient element relative to the numeric gradient for the (H2O)32 

test system for SVWN/6-31G(d). Red squares are the gradient with response terms 

included in the gradient. Blue squares are the gradient without response terms included in 

the gradient. RESDIM and RESPPC were set to 2.0 for all calculations. 
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Figure 3d. Error of each gradient element relative to the numeric gradient for the (H2O)32 

test system for HF/6-31G(d). Red squares are the gradient with response terms included 

in the gradient. Blue squares are the gradient without response terms included in the 

gradient. RESDIM and RESPPC were set to 2.0 for all calculations. 
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Figure 4a. Error of each gradient element relative to the numeric gradient for the (Ala)7 

test system for B3LYP/6-31G(d). Red squares are the gradient with response terms 

included in the gradient. Blue squares are the gradient without response terms included in 

the gradient. RESDIM and RESPPC were set to 2.0 for all calculations. 
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Figure 4b. Error of each gradient element relative to the numeric gradient for the (Ala)7 

test system for PBE0/6-31(d). Red squares are the gradient with response terms included 

in the gradient. Blue squares are the gradient without response terms included in the 

gradient. RESDIM and RESPPC were set to 2.0 for all calculations. 
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Figure 4c. Error of each gradient element relative to the numeric gradient for the (Ala)7 

test system for HF/6-31G(d). Red squares are the gradient with response terms included 

in the gradient. Blue squares are the gradient without response terms included in the 

gradient. RESDIM and RESPPC were set to 2.0 for all calculations. 
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Table 1. The maximum absolute gradient value (MAX), the root mean square of the 

errors (RMS error), and the maximum absolute error in any gradient element (MAX 

error) for the FMO gradient with and without response terms included for the (H2O)32 

cluster. The error in the numerical gradients is set to 0. Units are Hartree.  

 

 

 

Gradient MAX RMS error MAX error 
(H2O)32, B3LYP/6-31G(d), RESPPC=2.0, RESDIM=2.0 

With response terms 0.031425 0.000023 0.000100 
Without response terms 0.029790 0.000613 0.002122 

(H2O)32, PBE0/6-31G(d), RESPPC=2.0, RESDIM=2.0 
With response terms 0.029265 0.000019 0.000071 

Without response terms 0.029586 0.000377 0.001567 
(H2O)32, BLYP/6-31G(d), RESPPC=2.0, RESDIM=2.0 

With response terms 0.040782 0.000032 0.000132 
Without response terms 0.040278 0.000451 0.001649 

(H2O)32, SVWN/6-31G(d), RESPPC=2.0, RESDIM=2.0 
With response terms 0.048558 0.000016 0.000057 

Without response terms 0.049120 0.000421 0.001561 
(H2O)32, B3LYP/6-31G(d), RESPPC=0.0, RESDIM=0.0 

With response terms 0.031230 0.000017 0.000053 
Without response terms 0.031218 0.000164 0.000747 

(H2O)32, B3LYP/6-311G(2d,2p), RESPPC=2.0, RESDIM=2.0 
With response terms 0.024845 0.000033 0.000125 

Without response terms 0.024612 0.000612 .0003325 
(H2O)32, HF/6-31G(d), RESPPC=2.0, RESDIM=2.0 

With response terms 0.029817 0.000014 
 

0.000043 
Without response terms 0.029600 0.000327 0.001520 
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Table 2. The maximum absolute gradient value (MAX), the root mean square of the 

errors (RMS error), and the maximum absolute error in any gradient element (MAX 

error) for the FMO gradient with and without response terms included for the (ALA)7 

polypeptide. RESDIM and RESPPC were set to 2.0 for all calculations. The error in the 

numerical gradients is set to 0. All units are in Hartree. 

 

 

 

 

 

 

 

Gradient MAX RMS error MAX error 

(ALA)7, B3LYP/6-31G(d) 

With response terms 0.631294 0.000010 .000038 

Without response terms 0.631309 0.000332 .001308 

(ALA)7, PBE0/6-31G(d) 

With response terms 0.635749 0.0000091 0.000018 

Without response terms 0.635756 0.000336 0.001279 

(ALA)7 HF/6-31G(d) 

With response terms 0.635648 .0000098 0.000054 

Without response terms 0.635691 .000285 0.001349 
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Table 3. Comparison of the FMO-DFT and DFT gradients for the (H2O)32 cluster with 

response terms included. MAX = the maximum absolute value in the FMO-DFT 

gradient; RMSD = the root mean square difference between FMO-DFT gradient elements 

and DFT gradient elements; MAX diff = the maximum absolute difference between a 

FMO-DFT gradient element a DFT gradient element. RESDIM and RESPPC were set to 

2.0 for all FMO calculations. Units are in a.u. 

 

 

 

 

 

 

 

 

 

 

MAX RMSD MAX diff 

(H2O)32, B3LYP/6-31G(d) 

0.031425 0.001349 0.00544 
(H2O)32, PBE0/6-31G(d) 

0.029265 0.001176 0.00426 
(H2O)32, SVWN/6-31G(d) 

0.048558 0.001558 0.00533 
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Chapter 4. Fragment molecular orbital molecular dynamics with the fully analytic 

energy gradient 

A paper published in The Journal of Chemical Theory and Computation 

Kurt R. Brorsen, Noriyuki Minezawa, Feng Xu, Theresa L. Windus and Mark S. Gordon 

 

Abstract 

 Fragment molecular orbital molecular dynamics (FMO-MD) with periodic 

boundary conditions is performed on liquid water using the analytic energy gradient, the 

electrostatic potential point charge approximation, and the electrostatic dimer 

approximation.  Compared to previous FMO-MD simulations of water that used an 

approximate energy gradient, inclusion of the response terms to provide a fully analytic 

energy gradient results in better energy conservation in the NVE ensemble for liquid 

water. An FMO-MD simulation that includes the fully analytic energy gradient and two 

body corrections (FMO2) gives improved energy conservation compared with a 

previously calculated FMO-MD simulation with an approximate energy gradient and 

including up to three body corrections (FMO3). 

 

1. Introduction 

1.1 Fragment Molecular Orbital Method 

 Much progress has been made recently in improving algorithms for ab initio 

calculations on large systems1,2.  One strategy is to use a fragmentation approach, in 

which a large system of interest is divided into smaller subsystems, and ab initio 

calculations are performed on these smaller subsystems2.  One of the most successful and 
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extensively developed fragmentation methods is the fragment molecular orbital (FMO) 

method3 proposed by Kitaura et al. in 1999.  The FMO method has been implemented for 

most ab initio and density functional theory (DFT) methods.4-8 Numerous approximations 

to the original FMO method have been implemented to improve the efficiency of the 

calculation.  The two most important of these approximations are the electrostatic point 

charge (ESP-PC) approximation and the electrostatic dimer (ES-DIM) approximation9.  

The ESP-PC approximation calculates the FMO embedded electrostatic potential using 

point charges rather than two electron integrals, while the ES-DIM approximation 

calculates the dimer energy of two fragments using point charges rather than using ab 

initio methods. 

 FMO gradients were developed soon after the introduction of the FMO method10.  

Improvements to the gradient followed that allowed the use of gradients with the ESP-PC 

approximation11 and the ES-DIM approximation12.  Because the dimer (or trimer) density 

is not iterated to self-consistency, the FMO2 (or FMO3) method is not variational. 

Consequently, response terms arising from the derivative of the molecular orbital 

coefficients with respect to nuclear coordinates must be included in the calculation of the 

first derivative.  Because the inclusion of these response terms in the gradient requires the 

solution of the coupled perturbed Hartree-Fock equations, the original formulation of the 

FMO gradient neglected the response terms, based on the supposition that such terms 

make only small contributions to the gradient.  Nagata et al.13 solved these analytic 

gradient response equations for the FMO method at the restricted Hartree-Fock (RHF) 

level of theory (without the use of the ESP-PC approximation) by introducing the self-

consistent Z-vector (SCZV) procedure.  More recently, the response equations have been 
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solved for and implemented for FMO-MP214 and for the general FMO method in which 

the ESP-PC approximation is included15. The corresponding analytic gradients for FMO-

DFT will be forthcoming shortly. 

1.2 FMO Molecular Dynamics 

 Komeiji et al. first implemented FMO2-molecular dynamics (FMO-MD) in 

2003,16,17 and many applications of FMO-MD have since been published18-22.  The 

authors of the first implementation of FMO-MD16 noted that the neglect of the response 

terms in the FMO gradient led to less than perfect energy conservation for a NVE 

ensemble, but this lack of energy conservation was deemed acceptable; since the fully 

analytic gradient had yet to be derived, there was no alternative.   

 Further improvements to the FMO-MD algorithm have been implemented, both to 

the FMO-MD method itself and to improve the energy conservation of FMO-MD23.  The 

FMO3 method, in which explicit three body interactions are included in the FMO 

calculation, improves both the total energy and electron density of a FMO calculation.24-

26 This prompted the development of a FMO3-MD method to study water and protonated 

water systems27 since three-body effects are important in water.28 Although fully analytic 

FMO3 gradients have not yet been derived and implemented, it appears that using the 

FMO3 level of theory improves energy conservation in FMO-MD simulations.23 Of 

course, while the FMO3 method is more accurate than FMO2 due to the explicit 

inclusion of three-body terms, it is likewise much more computationally demanding. It 

was recently demonstrated that FMO3-MD simulations (without periodic boundary 

conditions) are more than a factor of four more computationally expensive than a 

corresponding FMO2-MD simulation for water.23 The inclusion of periodic boundary 
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conditions will greatly increase this FMO3/FMO2 ratio, as many more calculations 

would have to be performed on triads of fragments when periodic boundary conditions 

are used. Therefore, from the perspective of computational expense, FMO2-MD is 

preferable if the accuracy of its energetics and forces is adequate. This is especially the 

case if one can guarantee good FMO2-MD energy conservation.  

 Another addition to FMO-MD in an attempt to improve energy conservation is 

dynamic fragmentation. 23,29,30 Dynamic fragmentation continually fragments a system 

over the course of a MD simulation, using a distance-based cutoff, and allows FMO-MD 

to describe processes such as proton transfer or chemical reactions. Dynamic 

fragmentation apparently improves energy conservation in FMO-MD simulations for 

systems such as a protonated water clusters.23 While dynamic fragmentation seems to be 

beneficial for improving energy conservation for reactive systems, it is desirable to be 

able to run FMO-MD simulations without the need for dynamic fragmentation in order to 

reduce the complexity of FMO-MD runs.   

 All of the FMO-MD improvements described above have been implemented 

using a gradient that neglects the response terms.  As noted above, the response terms for 

the FMO2-RHF method were recently derived and implemented using the SCZV 

procedure. 13 As analytic gradients are essential for accurate MD simulations, these 

response terms should be included in all FMO-MD calculations. In the original derivation 

of the SCZV procedure, the root mean square deviation error of the analytic gradient with 

response terms was shown13 to improve the accuracy (measured by comparison to 

numerical gradients) for a single geometry by more than an order of magnitude, relative 

to the gradient in which the response terms are omitted. The new fully analytic gradient 
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has also been combined with the effective fragment potential31 to perform the first FMO-

MD simulation with response terms included in the gradient. 32 These simulations showed 

good energy conservation.   

 The original implementation of the SCZV procedure assumed that the ESP-PC 

approximation was not used.  This assumption severely restricts the use of the SCZV 

procedure for FMO-MD applications, since the ESP-PC approximation is normally 

applied in FMO calculations.  Recently, Nagata, Fedorov and Kitaura15 have solved for 

and implemented the response terms for the FMO gradient within the ESP-PC 

approximation. This improvement to the gradient allows accurate FMO-MD simulations 

to be performed, with all common FMO approximations implemented and available.  

With this recent improvement, it is shown here that accurate FMO-MD simulations, 

including periodic boundary conditions, are possible without the need to use the FMO3-

MD level of theory.  

 

2. Equations of Fragment Molecular Orbital Mehtod  

In the following, a brief overview of the FMO2 restricted Hartree-Fock (RHF) energy is 

presented.  Details and equations for the FMO gradient10-13,15 and the FMO-MD 

method16,17,23 can be found elsewhere.  

The FMO2 energy for RHF is 

E =
I

N

∑EI
' +

I>J

N

∑(EIJ
' − EI

' − EJ
' )+

I>J

N

∑Tr(ΔDIJVIJ ),
     (1)

 

where N is the number of fragments, I or J are monomer fragments, IJ is a dimer 

consisting of fragments I and J, EX
'  is the internal fragment energy, VIJ is the matrix of 
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the electrostatic potential, and ΔDIJ is the dimer density difference matrix.  

The internal fragment energy, EX
' , is 

EX
' =

µν∈X
∑Dµν

X hµν
X + 1

2 µνλσ∈X
∑ Dµν

X Dλσ
X − 1

2
Dµλ

X Dνσ
X⎡

⎣⎢
⎤
⎦⎥
µν |λσ( )+ EX

NR,
   (2)

 

where hµν
X  is the one-electron Hamiltonian of fragment X, EX

NR is the nuclear repulsion 

potential energy of fragment X, 

EX
NR =

B∈X
∑

A(∈X )>B
∑ ZAZB

RAB

,
        (3)

 

Dλσ
K is the density matrix element of fragment K, and µν |λσ( )  is a two-electron integral 

in the AO basis. The elements of VIJ are expressed as 

Vµν
IJ =

K≠IJ
∑ uµν

K + vµν
K( )

         (4)
 

The one-electron and two electron terms In Eq. (4) are, respectively, 

uµν
K =

A∈K
∑ µ −ZA

r −RA

ν ,
        (5) 

vµν
K =

λσ∈K
∑Dλσ

K µν |λσ( ).  

The dimer density difference matrix ΔDIJ  is defined as  

ΔDIJ = DIJ − (DI ⊕DJ ).         (6) 

 For distances RXK between a monomer or dimer X and a fragment K in the ESP, 

that are greater than a user defined value RESP−PC , the two electron terms in the 

electrostatic potential are approximated as point charges: 
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vKµν ! "v
K
µν = µ QA

r −RA

ν
A∈K
∑ ,

       (7)
 

where A is atom A in fragment K, QA  is the nuclear charge on atom A, RA is coordinate 

of atom A,  is the coordinate of fragment K, and µ  and ν  are atomic basis functions. 

This approximation is called the ESP-PC approximation and is used in most FMO 

calculations. 

 For a dimer IJ, if the monomer pair I and J are farther apart than the (user 

defined) value of RES−DIM  the dimer energy is approximated as 

EIJ
' ≅ EI

' + EJ
' + Tr(DIuJ )+ Tr(DJu I )+

µν∈I
∑

λσ∈J
∑Dµν

I Dλσ
J µν |λσ( )+ ΔEIJ

NR.
  (8)

 

This approximation is called the ES-DIM approximation and reduces the number of ab 

initio dimer calculations that must be performed.  The ES-DIM approximation is 

employed for most FMO calculations. 

 

3. Computational Methods  

 A system of 32 water molecules was used to examine the accuracy of FMO-MD 

simulations with the ESP-PC approximation and response terms included in the gradient.  

This system was prepared by generating a random initial configuration of 32 waters 

inside a box (box length=9.865Å) , so that the density of the system matched that of 

water at 300 K. To equilibrate this system, a 50 ps classical MD simulation using the 

NVT ensemble at 300 K with an 0.5 fs step size was then performed using the previous 

random initial configuration as the starting point, and with randomized initial velocities 

so that the system temperature was 300 K.  The force field used for the classical MD 
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simulation was the general effective fragment potential (EFP2) method33,34.    

 The final geometry produced by the classical MD equilibration was used as the 

initial geometry for the FMO-MD equilibration.  The FMO-MD equilibration was 

performed using the NVT ensemble for 500 fs with a 1.0 fs step size and with 

randomized initial velocities to ensure that the temperature was maintained at 300 K.  

The Nose-Hoover thermostat with chains35 was used to control the temperature. The 

velocity was randomized to a temperature of 300 K every 100 fs.  For this FMO-MD 

equilibration, the ESP-PC approximation was not used and the cutoff value for the ES-

DIM approximation was set to 1.5: if monomers I and J are more than 1.5 reduced 

distances, ρIJ , apart, then the ab initio dimer calculation is not performed, and the 

interaction between fragments I and J is approximated using point charges. The reduced 

distance is 

ρIJ = rIJ / (RI + RJ ),          (9) 

In Eq. (9)  is the Euclidean distance between fragments I and J, and is the van der 

Waals radius of fragment X. The response terms were included in the energy gradient.  

All waters in the FMO-MD equilibration were treated at the RHF/6-31G(d,p) level of 

theory. 

 The final configuration and velocities of the FMO-MD equilibration was then 

used as the initial configuration and velocities for FMO-MD simulations using the NVE 

ensemble to examine the accuracy of the recent FMO gradient improvements.  These 

FMO-MD simulations were performed at the RHF/6-31G(d,p) level of theory for 50 ps 

using time steps in a range from 0.25-1.5 fs. Cutoff values were set to 4.75 for the ESP-

PC approximation and 1.5 for the ES-DIM approximation, so that these approximations 
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were used if two fragments are more than 4.75 and 1.5 reduced distances away, 

respectively. Two different FMO-MD simulations were performed at each time step - one 

simulation that included the response terms in the gradient and one that neglected the 

response terms. 

 For all FMO-MD calculations in this study, periodic boundary conditions (PBC) 

using the minimum image convention were employed36.  Previous studies23 of energy 

conservation for FMO-MD lacked PBC and instead employed a harmonic potential U 

that constrained the system to remain within a sphere centered at the origin:  

U = K max(r − rc, 0)[ ]2         (10) 

where K is a force constant (set to 0.75 kcal/mol/Å2 in the study), r is the distance to the 

origin, and rc is the radius of the sphere. It is assumed in the present study that the use of 

PBC vs. the harmonic potential has no noticeable relative effect on energy conservation 

for the FMO-MD simulations. Previous studies23 have shown that no dynamic 

fragmentation occurs for systems of pure water, so no dynamic fragmentation was 

employed. All FMO-MD simulations in this study were performed using the General 

Atomic and Molecular Electronic Structure System (GAMESS)37,38.   

 The root mean square deviation of the total energy, RMSD(E), was calculated for 

each of the FMO-MD NVE simulations as   

RMSD(E) = (E − E )2
        (11)

 

The velocity-Verlet method was used to integrate the equations of motion in this study.  

For the velocity-Verlet method, the RMSD(E) is proportional to the square of the time 

step, Δt 39: 
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RMSD(E)∝ (Δt)2          (12) 

Therefore, a log-log graph of RMSD(E) versus Δt  should be linear with a slope of 2.  

This relationship was previously16,23,32 used to evaluate the ability of FMO-MD 

simulations to produce an accurate NVE ensemble and will also be used for this study.  

 

4. Results and Discussions 

The log-log plot of RMSD(E) versus Δt is shown in Figure 1.  Benchmarking fully 

molecular orbital molecular dynamics (MO-MD) simulations, in which MD is performed 

using ab initio methods with no fragmentation, were not performed in this study due to 

the computational cost of performing MO-MD with PBC. Previous FMO-MD studies of 

water16,17,23 that have used MO-MD simulations as a benchmark have shown that MO-

MD exhibits smaller RMSD(E) for a given time step than FMO-MD, for all variations of 

FMO-MD that were available at the time. It is therefore assumed in this study that with 

identical initial conditions, a smaller RMSD(E) for a given MD simulation is always 

closer to the MO-MD value and therefore more accurate. Previous studies23 have also 

shown that the velocity-Verlet integrator begins to fail for MO-MD simulations with a 

large time step and have therefore focused on the time step range of 0.25-1.0 fs for which 

the MO-MD simulations have consistently shown perfect energy conservation based on a 

log-log plot of RMSD(E) versus ∆t with a slope of 2. 

The FMO2-MD plot in Figure 1 demonstrates a significant improvement in 

energy conservation when the response terms are included in the energy gradient (Figure 

1). Both simulations with and without response terms included show a decrease in energy 

conservation over the time step range of 0.25-0.4 fs, but the FMO2-MD simulation with 
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the response terms included is still more robust than is the FMO2-MD simulation without 

response terms. For larger step sizes ∆t, the RMSD(E) values for the two sets of 

simulations begin to converge at ~1.5 fs. The energy conservation begins to fail for both 

sets of MD simulations in the range of 0.25-0.4 fs. On the other hand, for the time step 

range in which most FMO-MD simulations will likely be performed (0.4-1.0 fs), a least 

squares line of best fit to the data has a slope of 1.948 for the FMO2-MD simulations that 

include response terms versus a slope of 0.772 for the FMO2-MD simulations that lack 

response terms. As a MD simulation exhibiting perfect energy conservation would have a 

best fit line with a slope of 2.0, the slopes of the best fit lines of the FMO2-MD 

simulations illustrate the necessity of adding response terms to the FMO gradient in order 

to obtain robust FMO2-MD simulations.  

Even with the response terms added, the RMSD(E) becomes constant at small 

time step values indicating that residual errors remain in the FMO gradient.  These 

residual errors are likely due to the fragmentation employed by the FMO method and are 

inherent to any FMO-MD simulation.  These residual errors could be further reduced by 

including higher body corrections to the FMO method (FMO3, FMO4, etc.) The residual 

errors would be completely eliminated at the limit of a full ab initio calculation on the 

entire system without fragmentation.  Indeed, the reduction in residual errors with the 

addition of higher body corrections is seen in Figure 2 where the FMO3-MD results 

appear to trend to a smaller constant than FMO2-MD results. 

The results presented in Figure 1 for the FMO2-MD simulation without response 

terms have a shape that is qualitatively similar to that of the previous FMO2-MD results23 

that are presented in Figure 2. As these two FMO2-MD simulations are performed on 
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identical systems of 32 waters at the RHF/6-31G(d,p) level of theory, these curves should 

in theory have the same RMSD(E) values, but this is not the case.  The FMO2-MD 

simulation (with no response terms) performed in the present work has a higher 

RMSD(E) for a given time step than the previous study.  This difference in the RMSD(E) 

is due to differences in how the classical and FMO-MD equilibrations were performed 

and the use of different initial geometries and velocities for the FMO2-MD simulations. 

However, the RMSD(E) differences between the two curves is less important than how 

closely the slope of each curve aligns with a line of slope 2. Also important is the relative 

shape of each curve with regard to the degree of energy conservation. From this 

perspective, both of the FMO2-MD simulations without response terms show similar, if 

not identical, energy conservation. Therefore, the FMO2-MD simulations without 

response terms can be treated as similar to one another. 

Now, recall that the FMO2-MD and FMO3-MD curves in Figure 2 were 

computed without the response terms. Comparing the curves in Figure 1 with those in 

Figure 2, the curve for the FMO2-MD simulation with the response terms included 

appears to show a greater improvement over the FMO2-MD curve without response 

terms than does the FMO3-MD curve in Figure 2. This can be seen by examining the 

ratio of RMSD(E) values for the FMO2-MD simulations with and without response terms 

in Figure 1 and the ratio of RMSD(E) values for the FMO3-MD and FMO2-MD 

simulations, both without response terms in Figure 2. These comparisons are presented in 

Table 1. It is assumed that the two FMO2-MD curves without response terms in Figure 1 

and Figure 2 can be treated as essentially the same, differing only due to different initial 

conditions. Therefore, referring to time steps in the range 0.4-1.0 fs in Table 1, the ratio 
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for the FMO2-MD simulations with vs. without response terms is slightly greater than the 

corresponding ratio for FMO3 vs. FMO2, both without response terms. This suggests that 

the energy conservation improves at least as much by including response terms in FMO2-

MD simulations as it does by choosing FMO3 without response terms. When one 

considers the additional computational expense incurred by choosing FMO3, FMO3-MD 

is a logical choice only when the system demands it due to the superior description of 

energetics and electron density of FMO3. It is also important to emphasize that FMO3 

MD without a fully analytic gradient is not guaranteed to provide acceptable energy 

conservation, and therefore acceptable predictions of bulk properties, in all cases. 

 

5. Conclusions and Future Studies 

 Accurate gradients are essential for producing correct forces in MD simulations.  

This can be seen for MD simulations with incomplete or inaccurate gradients, in which 

case energy conservation is violated for the NVE ensemble.  For the FMO method, 

accurate gradients require the addition of the response terms obtained from the SCZV 

procedure. Therefore, it is necessary to include the response terms for all FMO-MD 

simulations.  This practice has not been consistently followed in previous FMO-MD 

applications,19,21,22 in part because the fully analytic gradients have only recently been 

made available. Response terms for the FMO-MP2 gradient have been shown to improve 

the accuracy of the FMO-MP2 gradient even more than the corresponding response terms 

for the FMO-RHF method.14 Therefore, for FMO-MD simulations that include electron 

correlation, the addition of the response terms will be even more important than it is for 

FMO-RHF MD simulations. To date, response terms have not been implemented for 
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other correlated ab initio methods. The response terms for FMO-DFT will be presented in 

a future paper. The lack of response terms for FMO interfaced with other ab initio 

methods limits the potential applications of FMO-MD for these methods, so solving for 

these response terms is a promising future research direction.  Additionally, response 

terms have yet to be derived for FMO3.  Since FMO3 is necessary for an accurate 

description of some systems and for FMO-MD with smaller time steps, the derivation and 

implementation of these response terms would be beneficial for future FMO-MD studies. 
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Figure 1. Log-log plot of the RMSD(E) vs. ∆t for FMO2-MD with and without response 

terms as performed in this study. 
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Figure 2. Log-log plot of the RMSD(E) vs. ∆t for FMO2-MD and FMO3-MD without 

response terms and MO-MD from a previous study23. 
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Table 1 Ratio of the RMSD(E) for various FMO2-MD time steps with and without 

response terms (performed in this study) and for FMO3-MD and FMO2-MD both 

without response terms performed in a previous study23. 

 

 
 Time step (fs) 

FMO2-MD without 
response terms/FMO2-MD 

with response terms 

FMO2-MD/FMO3-MD 

0.25   1.77 1.85 

0.5  1.62 1.58 

0.75  1.38 1.23 

1.0  1.19 1.09 

1.5 1.13 1.06 
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Chapter 5. Surface affinity of the hydronium ion: The effective fragment potential 

and umbrella sampling 

A paper to be submitted to The Journal of Physical Chemistry 

Kurt R. Brorsen, Spencer R. Pruitt, Mark S. Gordon 

 

Abstract 

The surface affinity of the hydronium ion in water is investigated with umbrella 

sampling and classical molecular dynamics simulations, in which the system is described 

with the effective fragment potential (EFP). The solvated hydronium ion is also explored 

using second order perturbation theory for the hydronium ion and the empirical TIP5P 

potential for the waters. Umbrella sampling is used to analyze the surface affinity of the 

hydronium ion, varying the number of solvent water molecules from 32 to 256. Umbrella 

sampling with the EFP method predicts the hydronium ion to most probably lie about 

halfway between the center and edge of the water cluster, independent of the cluster size. 

Umbrella sampling using MP2 for the hydronium ion and TIP5P for the solvating waters 

predicts that the solvated proton most probably lies about 0.5-2.0 Å from the edge of the 

water cluster independent of the cluster size.  

 

1. Introduction 

 The solvated proton is of great importance in chemistry, occurring in a wide 

variety of natural settings, such as biological phenomena, surface science, and interstellar 

chemistry and has been widely studied experimentally and computationally.1-16 Of 

particular interest is the surface affinity of the solvated proton, since if the proton 
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demonstrates a surface affinity the proton could catalyze acid-base reactions at the 

interface. A general consensus has emerged that the solvated proton demonstrates a 

surface affinity, though there is conflicting evidence regarding the cause of the surface 

affinity.  

 Ideally, computational studies of the solvated proton should be performed with ab 

initio molecular dynamics (AIMD) simulations.17 The solvated proton is shared and 

transported among many different water molecules over the course of molecular 

dynamics (MD) simulations through the Grotthuss shuttling mechanism,18,19 and AIMD 

can account for the changing bonding topology of the solvated proton.  However, AIMD 

simulations of the solvated proton are difficult due to their computational expense and are 

therefore limited to smaller system sizes and shorter simulations.  While there has been 

some success with AIMD simulations on larger systems using Car-Parinello density 

functional theory,8,9 most MD simulations of the solvated proton have used either a 

classical molecular mechanics (MM) force field or a QM/MM description of the system. 

 Classical or QM/MM MD simulations of the solvated proton can be broadly 

separated into two groups: simulations that account for the Grotthuss shuttling 

mechanism through the use of the multistate empirical valence bond method20,21 (MS-

EVB) or other similar methods and simulations that treat the solvated proton as existing 

in either the limiting form of the Eigen22 (H3O+) or Zundel23 (H5O2
+) cation. While 

methods that include the Grotthuss shuttling mechanism are more physically correct in 

the way they account for proton transport, classical or QM/MM simulations in which the 

Grotthuss shuttling mechanism is ignored have described the surface affinity of the 

solvated proton in water reasonably well.1,3,6,13 The limiting form of the Eigen cation, the 
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hydronium ion, is the focus of the present study. Both a model potential and a QM/MM 

approach are used. 

 The effective fragment potential24,25 (EFP) is a one-electron model potential with 

fixed internal geometry. EFP calculations compute the interaction energy between 

fragments. In a typical EFP calculation, each molecule is treated as a fragment. The EFP 

interaction parameters are derived from an ab initio calculation. For neutral water 

clusters, the EFP method correctly reproduces the relative energies and geometries of 

second order Møller-Plesset (MP2) perturbation theory at orders of magnitude lower 

computational cost.25-27 The EFP method has also successfully been used to model ion 

solvation.28,29 For the protonated water cluster, one would expect that the EFP method 

will provide a level of accuracy similar to that of correlated electronic structure theory at 

a significantly smaller computational cost.30 The present study employs the general EFP2 

method for both the solute hydronium ion and the solvent water, in combination with 

umbrella sampling to calculate the probability distribution function of the hydronium ion 

as a function of the distance of the center of mass of the hydronium ion from the center of 

the cluster. A previous study used umbrella sampling to calculate the surface affinity of 

the hydronium ion using a polarizable force field.11 Umbrella sampling has also been 

combined with the EFP2 method to accurately compute the hydration structures of salts31 

and absolute pKa values.32  

 

2. Computational Methods 

The surface affinity of the hydronium ion was calculated using NVT MD 

simulations with umbrella sampling.  To systematically investigate the H3O+ surface 
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affinity as a function of cluster size, simulations were performed with one H3O+ and 32, 

64, 128, or 256 solvating water molecules. All MD simulations were performed using the 

electronic structure program GAMESS.33 

 In addition to the EFP2 simulations, an analogous set of calculations were 

performed in which the H3O+ is represented with second order perturbation theory (MP2) 

and the aug-cc-pVDZ basis set, and the waters are described with the TIP5P potential34 

(MP2/TIP5P).  

 For each umbrella sampling calculation, a harmonic spherical boundary potential 

centered at the origin was used to prevent evaporation.  The force constant for the 

spherical boundary potential was set to 3.0 kcal/mol/Å2 and the edge of the spherical 

boundary potential was set such that the density of each cluster would be equal to the 

density of water at 300 K if all molecules were inside the spherical boundary potential. 

For 32, 64, 128, and 256 solvating waters, the edge of the spherical boundary was set to 

6.2, 7.8, 9.7, and 12.2 Å from the origin, respectively. For the umbrella sampling, 

windows were selected every 0.5 Å, starting at the origin and ending at the edge of the 

spherical boundary potential. For 32, 64, 128, and 256 solvating waters there were 13, 16, 

20, and 26 windows, respectively.  The force constant for the umbrella sampling 

constraint was set to 2.0 kcal/mol/Å2. The force constants for the spherical boundary 

potential and umbrella sampling constraint were chosen to ensure adequate sampling and 

overlap among the umbrella sampling simulations. 

 For each combination of cluster size, level of theory, and window, initial NVT 

equilibrations were performed for 20 ps at 300 K.  The final configurations of the 
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equilibration were then used for NVT production simulations for 100 ps at 300 K. The 

NVT simulations all used the velocity-Verlet integration and a step size of 1.0 fs. 

To improve the convergence of the probability distribution function for the EFP2 

simulations with 256 solvating water molecules, two additional MD simulations with 

umbrella sampling were performed with windows at 9.5 and 10.5 Å from the center of 

the cluster.  The additional calculations used the same MD, spherical boundary potential, 

and umbrella sampling protocol as the other MD simulations with umbrella sampling. 

 The probability distribution function for each cluster size and level of theory was 

then obtained from the production simulations by the weighted histogram analysis 

method (WHAM).35,36 

 

3. Results and Discussion 

 The probability distribution functions for each cluster size and combination of 

theory are presented in Figure 1.  For all cluster sizes, EFP2 predicts the hydronium ion 

to lie closer to the center of the water cluster than does MP2/TIP5P.   

For the hydronium ion solvated by 32 waters, EFP2 and MP2/TIP5P predict that 

the hydronium ion most probably lies about ½ and ¾ of the way between the center and 

the edge of the water cluster respectively, where the edge of the water cluster is defined 

as the start of the spherical boundary potential. The greatest probability for finding H3O+ 

corresponds to a distance from the edge of the water cluster of about 2.5-3.5 Å for EFP2 

and about 0.5-2.0 Å for MP2/TIP5P. The EFP2 and MP2/TIP5P probability density 

functions maintain common features as the water cluster size is increased. MP2/TIP5P 

predicts that the hydronium ion most probably lies at a distance of about 0.5-2.0 Å from 
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the surface of the water cluster independent of the water cluster size. EFP2 predicts that 

the hydronium ion most probably lies about ½ of the way from the center to the surface 

of the water cluster independent of water cluster size.  

For all cluster sizes, the peaks in the MP2/TIP5P probability distribution functions 

are sharper and higher than the corresponding EFP2 probability distribution functions. 

The sharp MP2/TIP5P probability distribution function indicates that for MP2/TIP5P the 

hydronium ion is unlikely to be found outside the most probable region of space of 0.5-

2.0 Å from the edge of the water cluster. The more diffuse EFP2 probability distribution 

function indicates that while the hydronium ion is most likely to be found at a distance of 

about ½ of the way from the center to the surface of the water cluster, the hydronium ion 

is much less constrained to one region of space than is the case with MP2/TIP5P.  

Both the MP2/TIP5P and EFP2 probability distribution functions show smaller 

propensities for the hydronium ion to be near the center of the water cluster than in other 

regions of the water cluster. There is a stronger surface affinity for MP2/TIP5P than there 

is for EFP2, so MP2/TIP5P predicts a low probability for the hydronium ion to be at the 

center of the water cluster. It is important to stress that unlike the potential of mean force, 

the probability distribution function does not need to be corrected with the inclusion of a 

volume-entropy term.37 The present study is focused on where the hydronium ion is most 

likely to be found in a water cluster.  

The MP2/TIP5P results agree with much of the recent literature11-16 by predicting 

that the hydronium ion demonstrates a modest surface affinity. The EFP2 method differs 

from much of the recent literature by predicting that the hydronium ion does not 

demonstrate a significant surface affinity. The EFP2 method predicts that it is most 
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probable to find the hydronium ion halfway between the center and edge of the cluster 

independent of the water cluster size. However, as noted above, the EFP2 probability 

distribution is rather broad and indistinct. 

There are two possible origins for the difference between the EFP2 and 

MP2/TIP5P results. The first possibility is that because EFP2 uses fragments with fixed 

internal geometries, the system is prevented from relaxing to a lower energy state in 

which the hydronium ion might lie closer to the surface of the cluster.  Since the 

MP2/TIP5P results presented here use a solvent with frozen internal geometry, and since 

the MP2 hydronium ion does lie closer to the surface than does the EFP2 hydronium ion, 

it may be that only internal relaxation in the solute is needed. If this is indeed the case, 

and QM/MM MP2/EFP2 MD simulations should allow the system to relax sufficiently. 

Ab initio-EFP2 MD simulations are not currently possible, since the QM-EFP2 gradient 

is not yet fully implemented. Once this implementation is complete, QM-EFP2 MD 

simulations will be performed on solvated H3O+.   

Since the EFP2 method generally predicts intermolecular interactions with an 

accuracy that is equivalent to that of MP2, a second possible reason that EFP2 MD 

simulations predict that H3O+ lies further from the surface than is predicted by most 

methods is that an MP2 MD simulation would predict such a result as well. That is, the 

EFP2 prediction could be the correct one. At present, performing MP2 AIMD simulations 

with no approximations is computationally infeasible for the system sizes and simulation 

times required. However, with fragmentation methods38 such as the fragment molecular 

orbital (FMO) method,39 or related methods40,41,42 MP2 AIMD simulations will be 

possible. 
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4. Conclusions 

 The surface affinity of the hydronium ion was investigated using umbrella 

sampling based on MD simulations with both the EFP2 method and the combined 

MP2/TIP5P methods. The EFP2 and MP2/TIP5P probability density functions maintain 

common features independent of the number of solvating waters. According to the EFP2 

method, the hydronium ion most probably lies ~halfway between the center and the edge 

of the cluster, while the MP2/TIP5P simulations predict that the H3O+ is most likely to be 

found ~0.5-2.0 Å from the edge of the cluster. Both of these predictions are independent 

of the cluster size. The origin of the different predictions by the two methods is as yet 

unresolved.  
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Figure 1a. Comparison of the EFP2 (blue) and MP2/TIP5P (red) hydronium ion 
probability distribution functions with the hydronium ion solvated by 32 waters 
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Figure 1b. Comparison of the EFP2 (blue) and MP2/TIP5P (red) hydronium ion 
probability distribution functions with the hydronium ion solvated by 64 waters  
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Figure 1c. Comparison of the EFP2 (blue) and MP2/TIP5P (red) hydronium ion 
probability distribution functions with the hydronium ion solvated by 128 waters  
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Figure 1d. Comparison of the EFP2 (blue) and MP2/TIP5P (red) hydronium ion 
probability distribution functions with the hydronium ion solvated by 256 waters 
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Chapter 6. Can the effective fragment potential method predict an accurate melting 

point for ice? 

Kurt R. Brorsen, Mark S. Gordon 

 

Abstract 

 The melting point of ice-Ih (Tm) is calculated by direct simulation of the solid-

liquid interface with the waters described by the effective fragment potential. The NPH 

ensemble is used to calculate Tm, with initial geometries and velocities from 300 K and 

350 K NPT equilibrations. The NPH simulation with initial conditions from the 300 K 

NPT simulation converges to a Tm of 377.5 K ± 16.1 K. The NPH simulation with initial 

conditions from the 350 K NPT simulation converges to a Tm of 376.8 K ± 15.5 K. 

 

1. Introduction 

 Chemistry at standard ambient temperature and pressure is ubiquitous.  As the 

melting point of ice-Ih (Tm) is only 25 K lower than the standard ambient temperature, an 

accurate description of the phase diagram of water is an important characteristic of any 

water model. A small error in the description of the phase diagram of water can result in 

molecular dynamics (MD) calculations at the standard ambient temperature being 

performed in the wrong phase. Density functional theory (DFT) MD simulations have 

been employed to predict the melting point of ice. However, the DFT simulations result 

in errors in the predicted phase diagram of water.  DFT with the PBE and BLYP 

functionals1-3 predicts the melting point of ice-Ih to be 417 K and 411 K, respectively.4 

When dispersion corrections5-7 are added to the BLYP functional, the predicted melting 
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point improves to 360 K, still too high by nearly 90°.8 Therefore, the DFT MD 

simulations on water at the standard ambient temperature can be interpreted as describing 

a supercooled state, rather than a true liquid state.  The supercooled state results in an 

over-structured radial distribution function for water produced by DFT MD simulations 

at the standard ambient temperature.9  

 The melting point of ice-Ih has also been calculated using classical water 

models.10-17 A simple point charge model, such as TIP3P, predicts a melting point of 146 

K.4 TIP4P/2005, improves on TIP3P, but still predicts a too low melting point of 251 K.11 

Due to the importance of predicting the phase diagram, the TIP4P model has also been 

reparameterized as TIP4P/ICE.11 The TIP4P/ICE model has been designed to reproduce 

the melting point of ice-Ih by fitting the model potential parameters and predicts a melting 

point of 270 K.11 The TIP5P method118 predicts an accurate melting point of 272 K,11 but 

predicts that ice-Ih is not thermodynamically stable at 1 bar.19  

 With recent improvements in force field method developments,17,20-24 classical 

force fields can be generated from ab initio calculations as an alternative to fitting the 

parameters to empirical data. Examples of force fields generated by fitting parameters to 

ab initio calculations include iAMEOBA,17 and TTM3-F.20 The effective fragment 

potential (EFP) method is also obtained directly from ab initio quantum chemistry, but 

the EFP method contains no empirically fitted parameters.21-24 The iAMEOBA and 

TTM3-F methods predict the melting point of ice-Ih to be 261 K and 248 K 

respectively.17,8 The present study will focus on the EFP method.21-24  

  In the EFP method, a fragment with fixed internal geometry represents each water 

molecule. The EFP method contains five interaction energy terms that represent the 
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fundamental types of intermolecular interactions: 

Eefp = ECoul + Epol + Eexrep + Edisp + ECT    (1) 

In Eq. (1), ECoul is the EFP-EFP Coulombic interaction, expressed as a distributed 

multipole expansion. Epol is the EFP-EFP polarization interacton, which is expressed in 

terms of localized orbital polarizability tensors and is iterated to self-consistency. The 

polarizability term accounts for many-body interactions via the iterative process.  Eexrep 

represents the exchange repulsion interaction and is expressed in a power series in the 

intermolecular overlap. Because of the use of localized orbitals, the series is successfully 

truncated at the quadratic term. Edisp is the EFP-EFP dispersion interaction. Edisp is 

expressed in terms of localized orbital frequency-dependent polarizabilities, integrated 

over the imaginary frequency range. ECT is the EFP-EFP charge transfer interaction, 

obtained in terms of the interaction between the occupied orbitals on one fragment and 

the virtual orbitals on the second fragment. Details regarding these terms can be obtained 

in the original references. 

 The EFP method accurately reproduces MP2 relative energies and geometries for water 

clusters, while requiring orders of magnitude less computational resources.25 

 The goal of the present study is to calculate the melting point of ice-Ih using the 

EFP method to determine if the EFP method can provide an accurate description of the 

melting point of ice-Ih at a reduced computational cost compared to previous DFT and 

model potential calculations.4,8 

 The melting point of ice-Ih can be calculated two ways: either by a Gibbs-Duhem 

integration of the free energy26 or by direct simulation of the solid-liquid interface.27-29 At 

the melting point, Gliq(P,T)T=Tm= Gsolid(P,T)T=Tm, so finding the melting point of ice-Ih by 
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Gibbs-Duhem integration requires the non-trivial determination of the Gibbs free energy 

for the ice and liquid states. An alternative approach that will be used in the present study 

is to calculate the melting point by direct coexistence simulations of the ice-water 

interface. The direct coexistence simulations can be performed using different 

ensembles.24 The present study uses the NPH ensemble, since the NPH ensemble allows 

the temperature of the system to adjust spontaneously to the melting point where 

Gliq(P,T)T=Tm= Gsolid(P,T)T=Tm.  Unlike the NVE ensemble, which also allows the 

temperature to spontaneously adjust, the NPH ensemble also allows standard pressure to 

be maintained during the simulation. For a simulation of ice-water in the NPH ensemble, 

if the initial temperature of the system is lower than the melting point, T < Tm, then the 

chemical potential of the liquid phase will be higher than the ice and waters from the 

liquid phase will release heat by freezing onto the ice surface. Likewise, if the initial 

temperature of the system is higher than the melting point, T > Tm, then the chemical 

potential of the ice will be higher than the liquid phase and waters from the ice will 

absorb heat and melt from the ice surface. Additional information about the relative 

benefits and drawbacks of Gibbs-Duhem integration and direct coexistence simulation in 

different ensembles can be found in a recent review.30 

 

2. Computational Methods 

 The EFP method was used to describe the waters in all MD simulations, using the 

electronic structure program GAMESS.31 To calculate Tm, an ice-liquid system of 192 

waters was prepared in a simulation cell of 27.32x15.61x14.72 Å. A representative 

geometry of the ice-liquid system is presented in Figure 1.  For the initial configuration of 
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the ice-liquid system, 96 of the waters were assumed to be ice-Ih-like (top half of Figure 

1) and were prepared with the Bernal-Fowler rules such that the simulation cell has a net 

zero dipole moment.32 The remaining 96 waters (bottom half of Figure 1) were assumed 

to be liquid-like and were prepared from a NVT equilibration at 300 K for 100 ps with a 

step size of 0.25 fs using the velocity-Verlet algorithm in a simulation cell of 

13.52x15.61x14.72 Å. The ice-liquid system in the present study is the same size and 

prepared in a similar manner as that used in previous DFT calculations of Tm.4,8 The ice-

liquid system in the present study was chosen to allow direct comparison of Tm between 

the EFP method and the previous DFT calculations. 

The predicted Tm is apparently not converged with respect to system size for a 

simulation cell of 192 waters. Studies with the TIP4P potential have shown that the 

calculated Tm increases with system size, rising from ~200 K with a simulation cell of 

192 waters to 229 ±1 K with a simulation cell of 12,288 waters.33 A previous DFT 

study,1,2 upon which the present work is based, calculated4,8 Tm with a simulation cell of 

192 waters. The authors assumed that for TIP4P and DFT, the change of Tm as a function 

of simulation cell size is qualitatively similar and therefore that their calculated Tm is 

most likely a lower bound of the true Tm for their level of theory. The assumption that the 

calculated Tm is most likely a lower bound of the true Tm is made in the present work as 

well.  

500 fs equilibrations with a 0.25 fs step size were performed in the NPT ensemble 

at 1.0 atm with the velocity-Verlet algorithm at 300 K and 350 K on the merged ice-

liquid systems to allow the ice-liquid system to relax.  The final conditions of each of the 

NPT simulations were used as the initial conditions for the NPH simulations in which Tm 
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was calculated. The NPH simulations used a 0.25 fs step size, a pressure of 1.0 atm, and 

the velocity-Verlet algorithm. For the NPH simulations, the temperature was assumed to 

converge to Tm after 15 ps and the next 19.4 ps were used to determine the value of Tm.  

 

3. Results and Discussion 

 The temperature versus the MD simulation time for the two NPH simulations is 

presented in Figure 2. The NPH simulation with initial conditions from the 300 K NPT 

simulation converges to a Tm of 377.5 K ± 16.1 K. The NPH simulation with initial 

conditions from the 350 K NPT simulation converges to a Tm of 376.8 K ± 15.5 K. 

Pooling and averaging the two NPH simulations together, Tm for the EFP method is 

calculated to be 377.2 K.  

The Tm predicted by EFP compared to other methods is presented in Table 1. 

Unlike many of the classical force field methods presented in Table 1, the EFP method 

calculates too large a value for Tm. One possible source of error in the calculation of Tm is 

that the EFP fragments are internally rigid. Flexible force fields such as TTM3-F20 or 

iAMOEBA17 calculate a more accurate value for Tm than the EFP2 method. The error 

from the fixed internal geometries can be eliminated with the effective fragment 

molecular orbital (EFMO) method,34,35 in which the fragments are flexible. The 

derivation and implementation of the EFMO analytic energy gradient is in progress. Once 

this is accomplished, EFMO MD simulations will be possible, and the importance of 

internal fragment flexibility can be assessed.  

The Tm predicted by the EFP method is similar to that predicted by various DFT 

methods.4,8 The agreement between the EFP and DFT methods is not entirely surprising, 
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since the EFP method is derived from first principles. It is possible that the EFP method 

is correctly mimicking what the MP2 melting point of water would be if one performed 

MP2 MD simulations with internally frozen geometries. Calculating the melting point 

with MP2 by direct simulation of the solid-liquid interface is not currently 

computationally feasible, but through the use of fragmentation methods36 such as the 

fragment molecular orbital method,37,38 the Tm of ice-Ih described with MP2 will be 

calculated in the future. 
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Figure 1 

Representative geometry of the ice-water system with 96 ice-Ih-like waters and 96 liquid-

like waters. 
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Figure 2 

The temperature of the liquid-ice NPH simulations with initial conditions from the 300 K 

NPT simulation (blue) and 350 K NPT simulation (red). 
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Table 1 

Calculated melting point of ice-Ih 

Method Melting Point (K) 

EFP2 377.2 

BLYP4 417 

PBE4 411 

BLYP-D8 360 

TIP3P10 146 

TIP5P11 272 

TTM3-F8 248 

iAMOEBA17 261 

TIP4P/ICE11 270 

TIP4P/200511 251 
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Chapter 7. Conclusions 

 

 In Chapter 2, the analytic gradient for the fragment molecular orbital (FMO) 

method expanded to second order (FMO2) and interfaced with restricted Hartree-Fock 

(RHF) was derived and the implemented was discussed.  The FMO2-RHF analytic 

gradient requires the addition of response terms that arise from the derivative of the 

molecular orbital coefficient with respect to nuclear coordinate. The response terms are 

solved through the self-consistent Z-vector (SCZV) method.  The SCZV procedure 

calculates the Z-vector of each fragment in the field of the Z-vectors of the other 

fragments. The derivation in chapter 2 is valid with the electrostatic dimer approximation, 

but requires that the FMO electrostatic potential either not be approximated at all, or be 

approximated uniformly.  

The accuracy of the FMO2-RHF analytic gradient was tested by comparing the 

FMO-RHF analytic gradient and an earlier (incomplete) version of the FMO-RHF 

gradient with fully numerical gradients.  For the four systems tested, the root mean square 

deviation (RMSD) of the FMO2-RHF analytic gradient was an order of magnitude less 

than the previous FMO2-RHF version of the gradient. The SCZV procedure parallelizes 

well, with a parallel efficiency of 98% on 32 nodes.  The SCZV procedure increases the 

computational expense of an FMO2 calculation by 15-20%, a non-negligible but 

computationally tractable amount when considering the increase in the accuracy of the 

gradient. 

In Chapter 3, the analytic gradient for the FMO2 method interfaced with density 

functional theory (DFT) was derived and the implementation discussed. Like the FMO2-
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RHF analytic gradient, the FMO2-DFT gradient requires the addition of response terms 

arising from the derivative of the molecular orbital coefficient with respect to the nuclear 

coordinates; the FMO2-DFT analytic gradient includes the response terms through the 

SCZV method. The FMO2-DFT analytic gradient differs from the FMO2-RHF analytic 

gradient in that derivatives of the exchange-correlation functional must be included when 

calculating the response terms.  Derivatives of the exchange-correlation functional are 

included in standard DFT gradient implementations, but FMO2-DFT requires higher 

order derivatives than is typical.  The higher order derivatives arise during time-

dependent DFT (TDDFT) calculations and so the FMO2-DFT analytic gradient contains 

components of DFT and TDDFT theory. 

Similar to the FMO2-RHF gradient, the FMO2-DFT gradient was tested by 

comparing the FMO2-DFT gradient with and without the response terms included to 

numerical gradients. For all test systems, the FMO2-DFT gradient with response terms is 

more accurate than the FMO2-DFT gradient without response terms.  The increase in the 

accuracy of the gradient through inclusion of response terms for FMO2-DFT is of similar 

magnitude as that of FMO2-RHF. The FMO2-DFT analytic gradient reproduces DFT 

gradient calculations in which no fragmentation was performed. 

In Chapter 4, FMO2-RHF molecular dynamics (MD) simulations are performed 

with and without the analytic energy gradient to demonstrate that the analytic energy 

gradient is required for energy conservation in the NVE ensemble. The MD simulations 

are performed with different step sizes and the relative root mean square deviation of the 

energy from each MD simulations is used to check for energy conservation.  The analytic 

gradient in MD simulations provides substantially better energy conservation than for 
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MD simulations without the analytic gradient, and for FMO2-MD simulations, an 

analytic gradient with response terms should always be used. 

All analytic gradients for FMO are currently implemented only for FMO2. For 

FMO expanded to third order (FMO3), the present gradient is not fully analytic as the 

gradient neglects the response terms.  FMO3 is typically perfromed when three-body 

effects are important in a system. In addition to better energies, for the NVE ensemble, 

FMO3-MD with a gradient that neglects response terms provides better energy 

conservation than FMO2-MD with a gradient that neglects response terms. While FMO3-

MD provides better energy conservation than FMO2-MD, FMO3-MD is much more 

computationally expensive and FMO3-MD is best used only when three-body effects are 

important for the chemical system.  FMO2-MD with the analytic gradient was therefore 

compared to FMO3-MD with a gradient neglecting response terms to see which provided 

better energy conservations.  Owing to capabilities of different programs, a direct 

comparison could not be made, but by using an indirect comparison FMO2-MD with the 

analytic gradient was determined to provide better energy conservation in the NVE 

ensemble than FMO3-MD with a gradient neglecting response terms. Because of the 

better energy conservation of FMO2-MD with the analytic gradient, FMO3 is useful for 

FMO-MD solely when three-body effects are important. 

 In Chapter 5, the surface affinity of the hydronium ion was calculated using 

umbrella sampling where the system was described with the effective fragment potential 

(EFP). For comparison, QM/MM umbrella sampling calculations were performed in 

which the solute hydronium ion was treated with MP2 with the aug-cc-pVDZ basis and 

the solvent waters with both EFP and the TIP5P potential (MP2/TIP5P). To investigate 
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the effect of cluster size on the surface affinity of the hydronium ion, umbrella sampling 

calculations were performed with 32, 64, 128, and 256 solvating waters. 

For all cluster sizes, EFP predicts the hydronium ion to lie more interior than 

MP2/TIP5P. The cluster size was found to have negligible effect on the surface affinity 

of the hydronium ion, with EFP predicting that the solvated proton most probably lies 

halfway between the center and edge of the water cluster and MP2/TIP5P predicting the 

hydronium ion most probably lies 0.5-2.0 Å from the edge of the cluster independent of 

cluster size. The EFP results predict the hydronium ion to lie closer to the center of the 

water cluster than most of the recent experimental and computational literature. The 

discrepancy is hypothesized to arise from one of two possibilities. The first possibility is 

that the fixed internal geometries of the fragments in the EFP method are constraining the 

hydronium ion to lie in a higher energy region of space. From the results of other 

QM/MM studies of the hydronium ion, only the solute hydronium ion likely needs to be 

allowed to relax. In the future, QM/MM umbrella sampling calculations using MP2 to 

describe the hydronium ion and the EFP method to describe the solvent waters will be 

used to investigate the importance of solute relaxation. The other possibility is that since 

EFP method reproduces relative energies and geometries of water clusters at an MP2 

level of theory, the EFP results are correctly mimicking MP2 MD. MP2 MD is 

computationally infeasible for the system sizes and time scales needed for the study, so a 

direct comparison is impossible, but by employing fragmentation and using FMO-MP2-

MD or the effective fragment molecular orbital method (EFMO), an approximate 

comparison will be made. 

 In Chapter 6, the melting point of Ice-Ih was calculated using the EFP2 method by 
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direct simulation of the water-ice interface. The melting point of Ice-Ih was calculated 

using the NPH ensemble with initial conditions from 300 and 350 K NPT equilibrations. 

The NPH simulation with initial conditions from the 300 K NPT simulation converges to 

a Tm of 377.5 K +/- 16.1 K. The NPH simulation with initial conditions from the 350 K 

NPT simulation converges to a Tm of 376.8 K +/- 15.5 K. The simulation cell contained 

192 waters, so the melting point is not converged with respect to system size and 

therefore the calculated melting point is assumed to be a lower bound on the true melting 

point.  The EFP2 method predicts a too high melting point similar to DFT methods.  

Since the EFP2 method agrees well with MP2 for the relative energies and geometries of 

water clusters, a hypothesis is presented that ab initio methods systematically 

overestimate the melting point of Ice-Ih.  Similar to the investigation of the surface 

affinity of the hydronium ion, directly studying the hypothesis through MP2 MD is 

computationally intractable, but through the use of FMO-MD or EFMO an approximate 

comparison will once again be made. 
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